See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel are ongoing at ORNL as part of an effort sponsored by the U.S. Global Threat Reduction Initiative program. HFIR is a very high flux, ... Read More
In this paper, we present an interesting method to microfabricate a tilted micro air jet generator. We used the well-know Deep Reactive Ion Etching (DRIE) technique in order to realize in a silicon substrate a double side etching. For aircraft and cars, micro air jets will take an ... Read More
In this paper heat losses and gains are assessed for a specific measuring set-up improving the validity of performance data to accurately predict the initial stage of a boiling curve. Simulation focus on achieving results predicting real measuring data of a plain surface structure. ... Read More
This paper explores methods of improving the heat transfer coefficient in a crossflow heat exchanger as would be employed in conjunction with an experimental or production microreactor. This derivation of the Cross-Flow Heat Exchanger from the COMSOL Multiphysics® software Model Library ... Read More
The complex behavior of biological prosthetic heart valves was simulated. A multiphysics computational approach was adopted using different modules of COMSOL Multiphysics: the LiveLink(TM) interface was used to exchange the valve geometry with CAD, Structural Mechanics Module to set ... Read More
In this paper, we have addressed the issues related to the design and simulation of MEMS based silicon micro-needles for insertion of fluid into the dermis layer and into the subcutaneous fat layer. In addition, a poly-silicon micro-pump based on the principle of electrostatic actuation ... Read More
The Atlantis massif is a domal submarine seamount close to the mid-Atlantic Ridge at 30 °N. Close to the crest of the Massif, the Lost City hydrothermal field (LCHF) has been active for at least 120,000 years, venting fluids with a temperature of 40-90 °C. 5 km north of Lost City, a ... Read More
Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human ... Read More
We present an easy-to-use toolbox for the automated generation of reduced-order mixed-level models for the evaluation of squeeze-film damping in microelectromechanical systems. The toolbox is programmed in JAVA and heavily exploits the functionality provided by the COMSOL API. The ... Read More
We demonstrate a simple example about how to design my own algorithm for Navier-Stokes equation by weak form PDE and LiveLink™ for MATLAB®. After the computation, we get the same solution as other FEM packages (FreeFEM++ & FeniCs) at each iterative step, and we can see the Navier ... Read More