See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Seals or gaskets that are compressed between walls of a container are important to many industrial applications. Understanding the performance of such seals requires an understanding of the microscopic geometry of the sealing surfaces, because the fluid seeps around the undulations of ... Read More
The ceramic metal halide lamps belong to the most efficient high intensity light sources of these days. Presently it is the nitrogen contamination that causes the most significant problems during ignition. If this material gets into the lamp's interior in high concentrations, it will ... Read More
Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is ... Read More
Plasmonic nanoparticles have received increased interest due to their numerous potential applications in the field of optics and optoelectronics. Currently such metallic nanoparticles are applied in semiconductor devices, such as light emitting diodes (LEDs) and solar cells. The optical ... Read More
Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible ... Read More
Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible ... Read More
Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is ... Read More
In this report I study the airflow through ventilation ducts. By numerical simulation, the so-called k-factor has been estimated. The k-factor is the quotient of the airflow volume and the square root of the pressure drop over the duct. A two dimensional axial symmetric model has been ... Read More
It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole. Read More
Novel class of artificial optical antennas are of great interest in biosensing applications of nanoplasmonics due to their unique and tunable spectral properties. Silver colloid spheres covered with L-cysteine were studied experimentally by spectroscopy and TEM and numerically by a ... Read More
