See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Understanding the flow fields at the micro-scale is a key to develop methods of successfully mixing fluids for micro-scale applications. This paper investigates flow characteristics and mixing of three different geometries in micro-channel. A Circular groove micro mixer has been designed ... Read More
Dielectrophoresis (DEP) is a method for cell manipulation without physical contact in lab-on-chip devices, since it exploits the dielectric properties of cells suspended in a microfluidic sample, under the action of locally generated high-gradient electric fields. The DEP platform that ... Read More
Using COMSOL Multiphysics 3.5, a numerical model has been developed to determine the effect of the channel geometry and electrode configuration on cell performance based on polarization curves. The Butler-Volmer equation was implemented to determine the reaction rates at the electrodes. ... Read More
Recently, due to the dynamically increasing complexity of modern systems, a strong necessity appears for more systematic approaches to high quality control and process monitoring. Requirements imposed by process control in the area of spatio-temporal physical systems also called ... Read More
Coalescence of droplets is a widely investigated phenomenon. In inkjet printing micrometer sized droplets are deposited on a substrate which when positioned close enough to each other will coalesce and mix. Little is known about the flows and mixing behaviour within these small droplets. ... Read More
We will present the issues of a microreactor setup designed for microwave organic synthesis and demonstrate how COMSOL Multiphysics® is used to understand the mechanism of microwave heating and improve the microreactor design. The RF Module was used for the electromagnetics and solid ... Read More
Optical tweezers work on the idea of non-contact Optical Pressure felt by transparent particles, when shined by coherent light source such as lasers. On the other hand when light falls on the metal it excites the electron inside it and make them free. When these free electron cloud ... Read More
This paper is focused on topology optimization of heat transfer and fluid flow systems for multiphysics objectives. Specifically, COMSOL Multiphysics software is coupled with a method of moving asymptotes optimizer in a custom COMSOL / MATLAB script. Various physical process including ... Read More
A ferrofluid contains nanoscale ferromagnetic particles suspended in a carrier liquid. It is used in some high-power acoustic speakers to cool the drive coil. The ferromagnetic particles far from the heat source are attracted by the drive coil’s magnetic field. As the fluid approaches ... Read More
Multiphysics simulation was used in this work to model inductively coupled plasmas (ICPs). Developing a model of an ICP is challenging due to the complex relationship between the applied electric field and mixture of chemical species that develops. A preliminary model was developed and ... Read More
