See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Arc welding is a widely used process in heavy industry for the assembly of metallic components. To ensure high-quality welds, it is essential to understand both the welding process and the complex interactions within the melt pool. Numerical simulation is employed as a predictive tool to ... Read More
同轴磁齿轮是将一个或一组永磁体或电磁体安置在圆形转轴外侧,通过扭矩-速度的调整实现外部非接触式动能控制的机构,用于工业自动化控制和可再生能源等应用中,和机械齿轮不同,磁齿轮工作时无摩擦,所以能量损耗小。本文以二维旋转动网格模型为基础,在径向方向分别安置单个和多个永磁体。探究不同安置数量对外部空间环境产生的电磁感应规律。 Read More
Plasma reactors can be applied to the conversion of waste, biomass and fuels to synthesis gas (mixture of hydrogen and carbon dioxide) with efficiencies as higher as 90-95% and low energy demand, depending on the design optimization. In this work, a multi-step approach was applied to the ... Read More
Plasma torches are used in processing of materials and in energy industry for producing plasma. In a non-transferred arc plasma torch, an electric arc can be glowed by applying a direct current (DC) between the cathode and anode, both placed inside the torch. Then, the plasma (Fig. 1) is ... Read More
In this paper, we present a 2D axisymmetric self-consistent plasma fluid model for microwave plasmas operating in argon. The model was developed using COMSOL Multiphysics and its Plasma Module. Plasma, flow, heat and electromagnetic equations solved self-consistently. The effect of the ... Read More
Graphene, as a two-dimensional material with exceptional physical and chemical properties, exhibits highly tunable optical absorption within the visible spectrum. Its absorption is sensitive to polarization, the number of layers, and incident angles, making it an ideal candidate for ... Read More
前期研究中,我们设计了基于准同轴结构的微波等离子体无极灯 [1]。该结构以激发后的等离子体作为同轴内导体,法拉第笼作为外导体。仿真结果显示,电磁波在等离子体 - 金属构成的准同轴波导中传播时,同步被等离子体吸收并形成驻波;实验中,激发后的无极灯呈现亮 - 灭周期性特征,这与仿真所得电子密度分布特性高度一致。 基于上述研究基础,结合激发后等离子体具备高电导率、可作为同轴内导体的特性,我们进一步提出新设计,一种用于在放电管中产生长等离子体源的装置。该装置采用矩形波导与同轴波导组合结构,仍以高电导率的激发后等离子体为同轴内导体,外导体则由金属壁构成。对 Ar ... Read More
The plasmas generated in water involve various physical phenomena such as flows agitated by bubbles, high electric fields for breakdown, discharges in bubbles with size variation, and so on. In this paper, studies have been made on the simulation of plasmas generated in bubbles with size ... Read More
Plasma spraying is one of the prominent technologies for wear, corrosion and high temperature resistant coatings. The coating quality is very important to increase the performance of the components as well as to protect the outer surface of the component from external environment. The ... Read More
为深入探究材料属性对电弧等离子体热力学特性的影响,本研究以反应烧结碳化硅(RB-SiC)陶瓷为研究对象,基于 COMSOL Multiphysics 建立了耦合电流、磁场、层流及流体传热的磁流体动力学模型,并与304不锈钢进行对比分析。该模型综合考虑了电流、磁场与流场之间的能量转换,以及等离子体对电极与工件的热量传递,能够较为准确地描述电弧等离子体特性。结果表明,相较于304不锈钢,RB-SiC 等离子体具有更高的温度和热通量,但由于其极高的导热系数,工件在击穿后能迅速达到热平衡,且最终温度显著低于不锈钢。同时,RB-SiC 的等离子体最高温度位置不随脉宽变化 ... Read More
