See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Plasma torches are used in processing of materials as well as in the energy industry for producing plasma. In a non-transferred arc plasma torch, an electric arc can be initiated by applying a direct current (DC) between the cathode and anode, both placed inside the torch. Then, the ... Read More
Snow can exist in a wide range of temperatures. Its behavior changes especially around its melting point. A better understanding for wet snow is essential for snow pack stability, the effect of water percolation and friction between ski and wet snow surface. Technical details about ... Read More
Medical accelerators, in particular Cyclotrons, are used to accelerate charged particles to tens of Mega electron Volts (MeV) of energies. These high energy particles then used to produce isotopes for medical application such the system located at king Faisal Specialist Hospital and ... Read More
Recently a lot of research efforts have been focused on using plasmonics and nanophotonic structures for enhancing emission processes ranging from lasing to single-photon generation. The design of such structures heavily relies on the insight obtained from numerical simulations. In this ... Read More
Optical cloaking was considered as fictional. Recent developments shows that macro scale optical cloaking is practical and functional. Brief review of ray optics based macro optical cloaking concepts are given. COMSOL Multiphysics® software simulations of cloaking devices are detailed. ... Read More
本课题针对“三河市汇诚光机电有限公司”生产的热牵伸辊存在的加热线圈易烧断问题进行了理论分析和软件仿真,从理论上分析了磁场和涡流的分布规律,并基于电磁场与温度场耦合计算方法,对设备的温度分布进行研究,最终通过磁场与温度场耦合计算方法,模拟计算热辊电磁加热条件下的涡流分布与传热。通过COMSOL Multiphysics建立热牵伸辊二维和三维物理模型,进行了多物理场设置,边界条件的设定和材料参数的选定,用有限元法计算热牵伸辊在不同材料下的不同部位的磁通密度模、感应电流(涡流)以及热功率和温度,讨论了辊筒和线圈的热量分布,分析了热牵伸辊线圈寿命短的原因 ... Read More
A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, ... Read More
Several commercial CFD companies have recently extended their codes to magnetohydrodynamic (MHD) flows. However, there are many computational challenges associated with MHD flows under the harsh fusion environmental conditions that require such codes to be carefully examined in a special ... Read More
Radiofrequency ablation (RFA) is a minimally invasive procedure that can be used to treat chronic pain. Radiofrequency (RF) energy is emitted through a probe that is placed near a sensory nerve in the region of pain. The RF energy excites the nearby ions in the tissue causing them to ... Read More
Finite element modelling of electrical machines usually assumes uniform magnetic properties and loss behaviour throughout the steel laminations. It is well known that manufacturing processes, like the assembly of the machine, deteriorate the properties of the core material. Generally, ... Read More
