See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Multiphysics simulation was used in this work to model inductively coupled plasmas (ICPs). Developing a model of an ICP is challenging due to the complex relationship between the applied electric field and mixture of chemical species that develops. A preliminary model was developed and ... Read More
Plasma technology has potential applications in a wide range of areas, such as microwave reflectors/absorbers, material processing, sterilization and chemical neutralization. The knowledge about the fluid behavior in such systems has a central role, since the stability of the flow in the ... Read More
Electrostatically excited plasma waves can induce a “plasma wind” in the surrounding media or air. The lifted object has a shape of a flying saucer, just for better illustration. A travelling plasma wave propulsion requires a pre-ionized media around the surface and a travelling ... Read More
Over the last decade, plasmonic nanoparticles (PNPs) have received growing interest as exogenous contrast agents in the thermal expansion based photoacoustic (PA) imaging technique in biomedical applications [1]. Such functionality is due to the localized surface plasmon resonance (LSPR) ... Read More
Hemodialysis catheter lumens are routinely locked with heparin solution to reduce the risk of intra-luminal thrombus formation between treatment sessions. The lock volume infused is chosen to be the volume of the lumen, assuming no significant fraction of the heparin dose reaches the ... Read More
This work describes a model for plasma formation in the keyhole and above the EBW zone. The parameters of the plasma are closely connected to the characteristics of the thermal action of the electron beam on the welded metal, which allows operational control and study of EBW. The ... Read More
After previous microwave simulations done with very hard assumptions, we improve the model by using Funer model to improve prediction of plasma effects on the microwave coupling. Some parameters are still not well known and are used as adaptation parameters. An experience plan technique ... Read More
The computer simulation with COMSOL Multiphysics has become a widely used technique for the study of various problems in the field of plasma physics. Despite the increasing performance of computers, fully three-dimensional particle simulations still have got extremely high demands on ... Read More
The use of plasmas for the treatment industrial effluents provides a new alternative to the decontamination of wastewater. The strong oxidizing species (O,O3, OH) generated by the plasma, at room temperature, can oxidise organic pollutants present in the water. Our simulation deals with ... Read More
Chipmakers widely use the plasma-enhanced chemical vapour deposition (PECVD) technique for depositing thin dielectric or conducting films on wafers. The primary objective for a deposition process is to have a good flow and species uniformity on the wafer. Typically, a carefully designed ... Read More
