See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Minimal surfaces are found in nature from crystalline structures to biological nano and micro structures such as biomembranes, and osseous formations in sea urchin. An application to electrically mediated drug and gene delivery is presented. Periodic level surfaces which approximate ... Read More
In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing ... Read More
Fuel cells (FCs) are promising as an energy producing device, which at this stage of development will require extensive analysis and benefit from numerical modeling at different time- and length scales. COMSOL Multiphysics® is used to describe an intermediate temperature solid oxide fuel ... Read More
In magnetically confined fusion devices, electron cyclotron resonance heating (80-170 GHz) is characterized by a local RF-power deposition at the electron cyclotron resonance [1]. A mm-wave RF Gaussian beam is launched from a dedicated antenna and propagates through the highly turbulent ... Read More
Predictive food microbiology currently first requires experimental data for growth on fresh produce and then fitting an empirical or semi-empirical model to the data, making extrapolation to other conditions (temperature, type of produce) difficult. Herein, we develop a mechanistic ... Read More
Pulsed DC technology has led to the design of cost-effective deposition systems and to improved film properties, compared to conventional rf systems. In this work, a two-dimensional finite element model is used to investigate the high frequency pulsed DC discharges in nitrogen. The study ... Read More
This paper describes the design and characterization of an 8 slots resonant cavity Magnetron, which undergoes thermal-structural effects due to cathode heating. The proposed study involves Thermal Stress, Eigen-frequency and Particle Tracing analysis based on COMSOL Multiphysics®. ... Read More
A 2-D unsteady viscous flow around two cylinders is studied by numerical solutions of the unsteady Navier-Stokes equations with a finite element formulation using COMSOL Multiphysics®. The results of a numerical investigation of the Strouhal frequencies of two identical, stationary, ... Read More
This paper presents numerical simulation of plate wave modes in thin stainless steel plates using a racetrack spiral coil electromagnetic acoustic transducer (EMAT), which works under the principle of acousto-elastic effect, called Lorentz force mechanism. EMATs are useful for non ... Read More
Single stage centrifugal pumps are widely used in several engineering fields such as: room conditioning, energetic cycles, automotive industry, home care, etc. Thus, the possibility of simulate their behaviour, in terms of pressure increase and mass flow rate, is helpful in reducing ... Read More