See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Finite element models using COMSOL Multiphysics and MATLAB were developed to solve the problem of stress distribution interior homogeneous, isotropic, incompressible elastic solid material under known vertical external compression with a rectangular contact surface. Moreover, comparison ... Read More
The paper presents a method of extraction of electrical equivalent circuit of a one port surface acoustic wave (SAW) resonator from the results of simulation based on finite element method (FEM) using COMSOL Multiphysics software. A one port SAW resonator consists of large number of ... Read More
The evaluation of defect size and nature are two most controversial topics in ultrasonic flaw detection. The operation consists of an application of ultrasonic waves to pipes in order to detect metal loss and other defects in the pipe wall due to corrosion and other degradation ... Read More
Piezoelectric micromachined ultrasound transducers (PMUTs) are gaining increasing interest as miniaturized, low-power devices which can be easily integrated with electronic systems for applications such as medical imaging, therapeutic ultrasound, and particle manipulation. This work ... Read More
Modern home audio products are starting to feature dedicated upward firing height channel speakers, which are a combination of unique physical speaker design and special signal processing, to reproduce audio as if the sound source is located in the ceiling. Due to slim form factor design ... Read More
Self-heating is a problem to consider for Ultrasound Imaging probes. Since the probe is in contact with the skin, it’s necessary to find a solution to lower the front face temperature in order to avoid patient discomfort, even at the most demanding operating condition. One solution ... Read More
One of the main design questions in loudspeaker enclosures concern vibrations reduction. An ideal cabinet would be infinitely rigid, so a section of an engineer work is focused on this goal. Solutions depend by loudspeaker system audio field: Line Arrays, Automotive environments or hi ... Read More
A recurring problem, in heat assisted magnetic recording is the build-up of thermal energy in the near-field transducer leading to NFT deformation and the cessation of operation. A mechanism to dissipate this excess heat in the NFT without greatly effecting its’ plasmonic response is ... Read More
When placing a loudspeaker in a cabinet, standing waves inside the cabinet affect the frequency response with ripples. This peaks and dips due to pressure cancellation inside the cabinet have an effect on the diaphragm and generating sound out from the vents. If it was in a condition of ... Read More
A three-dimensional finite element model, based on the linear field equations for superimposed small vibrations onto nonlinear thermoelastic stressed media given by Lee and Yong, was developed. This method involves solving the thermal stress and piezoelectric model with geometric and ... Read More
