Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermo-Elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating

J. Jimenez-Lozano[1], P. Vacas-Jacques[1], W. Franco[1]
[1]Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Radiofrequency (RF) technology offers unique advantages for noninvasive selective heating of relatively large volumes of tissue. In this work, we present a mathematical model for selective non-invasive, non-ablative RF heating of cutaneous and subcutaneous tissue (with detailed fiber septa structures) including their thermo-elastic response. Our analysis shows that the fiber septa architecture ...

Surface Plasmon Resonance Dependence on Size in Metallic Nano-Spheres - new

K. Kluczyk[1], W. Jacak[1]
[1]Institute of Physics, Wrocław University of Technology, Wrocław, Poland

Surface plasmon resonance in metallic nanoparticles is highly and shape dependent, which enables varius applications in photovoltaics, photonics, sensing and even medicine. Particularly we observe redshift in plasmon resonance with increasing nanoparticle size. We investigate nanoparticle size influence on plasmon resonance within theoretical and numerical approach and compare results with ...

A Study of Geometrical Shape of Central Plate in Electrostatic Actuation

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash [1]
[1]Department of Electronics and Communication, Basaveshwara Engineering College, Bagalkot, Karnataka, India

This study is performed to know which central plate geometry is best suited for electrostatically actuated switch. The simulation is carried out in COMSOL Multiphysics, where user is free to model the geometry without depth knowledge about geometrical dependency of electrostatic. The study of the centrally suspended geometrical models such as circle, square and rectangle suspended by two short ...

Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres

K. Ehrhold[1], S. Christiansen[1,2], and U. Gösele[1]
[1]Max Planck Institute of Microstructure Physics, Halle, Germany,
[2]Institute of Photonic Technology, Jena, Germany

Plasmonics is a new branch of the fascinating field of photonics and develops concepts to quench light beyond the diffraction limit and enhance electromagnetic fields. These enhancements occur in metals as localized surface plasmon polaritons (LSP) a coupling of the surface density oscillations of the electron gas to the incident light. With threedimensional nano-structures of coinage metals ...

Magnetostatic-Magnon Sensors for Microwave Microscopy of Biological Structures - new

E. Hollander[1], E. O. Kamenetskii[1], R. Shavit[1]
[1]Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

Microwave sensing and monitoring is very attractive for biological applications because of their sensitivity to water and dielectric contrast. Direct detection of biological structures in microwave frequencies and understanding of the molecular mechanisms of microwave effects is considered as a problem of a great importance. Nowadays, however, microwave technique for localized testing biological ...

Numerical Optimization Technique for the Optimal Design of the Surface Plasmon Grating Coupler

C. Caiseda[1], V. Aksyuk[2], I. Griva[3]
[1]Inter American University of Puerto Rico, Bayamon, PR, USA
[2]National Institute of Standards and Technology, Gaithersburg, MD, USA
[3]George Mason University, Fairfax, VA, USA

The optimal design of the grating coupler for surface plasmon generation is revisited for its interdisciplinary importance in the efficient use of energy, and the strong dependence of the energy convergence rate of the system on the design. This work contributes a comprehensive gradient based numerical optimization technique to optimize both geometry of the grating and parameters of the ...

Finite Element Modeling of Electromagnetic Scattering for Microwave Breast Cancer Detection

R. Firoozabadi[1], and E.L. Miller[2]
[1]Airvana Inc., Chelmsford, MA, USA
[2]Tufts University, Medford, MA, USA

In this paper, COMSOL Multiphysics software is utilized as a finite element forward solver to obtain the electromagnetic fields at the receiving antennas while the breast is illuminated by one antenna in the array. Geometry consists of coronal slices of the 3-D breast. Simulations are done by a MATLAB code which runs COMSOL finite element solver and collects the data at the receiving antennas at ...

Patch Antenna Model for Unmanned Aerial Vehicle

T. Eppes, I. Milanovic, and S. Thiruvengadam
University of Hartford
West Hartford, CT

Patch antennas are widely used in communications links with unmanned aerial vehicles. Their hemispherical send and receive patterns enable the systems to maintain radio frequency contact over a wide range of vehicular attitudes. A microstrip-fed design offers other attractive features including lightweight, inexpensive, and a 3-D structure that can be easily integrated into the fuselage. This ...

Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Y.A. Urzhumov[1][,][2], N.I. Landy[1][,][2], C. Ciraci[2], D.R. Smith[1][,][2]
[1]Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
[2]Center for Metamaterials and Integrated Plasmonics, Pratt School of Engineering, Duke University, Durham, NC, USA

Linear wave propagation through inhomogeneous structures of size R?? (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/?. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the ...

Visible Spectral Reflectance Analysis in a Metal-Insulator-Metal (MIM) Multilayer with COMSOL Multiphysics

Y. Oshikane[1], K. Murai[1]
[1]Osaka University, Suita City, Osaka, Japan

We are developing a reflective metal-insulator-metal (MIM) filter with narrow band absorption. In the MIM structure, the interaction between subwavelength multilayer and visible light, and the resultant surface plasmon resonance (SPR) in specific illumination conditions must be understood. Such electromagnetic field interactions have been analysed using COMSOL Multiphysics and RF Module.