Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Y.A. Urzhumov[1][,][2], N.I. Landy[1][,][2], C. Ciraci[2], D.R. Smith[1][,][2]
[1]Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
[2]Center for Metamaterials and Integrated Plasmonics, Pratt School of Engineering, Duke University, Durham, NC, USA

Linear wave propagation through inhomogeneous structures of size R?? (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/?. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the ...

A Study of Geometrical Shape of Central Plate in Electrostatic Actuation

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash [1]
[1]Department of Electronics and Communication, Basaveshwara Engineering College, Bagalkot, Karnataka, India

This study is performed to know which central plate geometry is best suited for electrostatically actuated switch. The simulation is carried out in COMSOL Multiphysics, where user is free to model the geometry without depth knowledge about geometrical dependency of electrostatic. The study of the centrally suspended geometrical models such as circle, square and rectangle suspended by two short ...

Microwave Heating Simulation of Frozen Pie - new

F. Chen[1], T. Gulati[1], H. Zhu[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

This research studies the thermal effect of frozen pie heating in the microwave oven. Considering as composite material, the properties of pie derived based on its composition. Here the package, susceptor’s influence to the temperature distribution is also studied.

Determination of the Optical Properties of Individual Gold Nanorods through Numerical Modeling and Experiment

Y. Davletshin[1], J.C. Kumaradas[1]
[1]Ryerson University, Toronto, ON, Canada

The optical scattering and absorption of gold nanorods (GNRs) depends on its size, shape, and surroundings. This dependence is due to both intrinsic and extrinsic effects. A good understanding of this dependence is needed for applications of GNRs in photo-thermal therapy, optical and opto-acoustic imaging, biosensing, and other photonic areas. Extrinsic effects are caused by the production of ...

Design of Microwave Cavity for Non-Thermal Plasma Generation - new

N. Manivannan[1], W. Balachandran[1]
[1]Brunel University, Uxbridge, UK

Design of Microwave Resonance Cavity (MRC) to generate non-thermal plasma to treat NOx and SOx from marine diesel engine is presented in this paper. Microwave frequency of 2.45GHz is used generate the required plasma. A number of wave guides are used to transfer the microwave energy into to MRC from the microwave source. COMSOL multi-physics software is used to model the waveguides and to ...

Improving Heating Uniformity of Dried Fruit in RF Treatments for Pest Control: Model Development and Validation - new

B. Alfaifi[1], J. Tang[2], Y. Jiao[2], S. Wang[3], B. Rasco[2], S. Jiao[2], S. Sablani[2]
[1]King Saud University, Riyadh, Saudi Arabia
[2]Washington State University, Pullman, WA, USA
[3]Northwest A&F University, Yangling, Shaanxi, China

Non-uniform heating is one of the most important challenges during the development of radio frequency (RF) heat treatments for pest control. A computer simulation model using finite element–based COMSOL Multiphysics® software was developed to investigate the heating uniformity of raisins packed in a rectangular plastic container and treated using RF heating. The developed model was then ...

Finite Element Modeling of Electromagnetic Scattering for Microwave Breast Cancer Detection

R. Firoozabadi[1], and E.L. Miller[2]
[1]Airvana Inc., Chelmsford, MA, USA
[2]Tufts University, Medford, MA, USA

In this paper, COMSOL Multiphysics software is utilized as a finite element forward solver to obtain the electromagnetic fields at the receiving antennas while the breast is illuminated by one antenna in the array. Geometry consists of coronal slices of the 3-D breast. Simulations are done by a MATLAB code which runs COMSOL finite element solver and collects the data at the receiving antennas at ...

Heating of Metal Nanoparticles on Absorbing Substrates

L. Bergamini [1], O. Muskens [2], N. Zabala [1], J. Aizpurua [3]
[1] UPV/EHU, Bilbao, Spain; Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain
[2] University of Southampton, Southampton, UK
[3] Materials Physics Center and CSIC-UPV/EHU, Donostia-San Sebastian, Spain; Donostia International Physics Center, Donostia-San Sebastian, Spain

It is well-known that metal nanoparticles (NPs) excited at the plasmon frequency not only exhibit peculiar optical properties (e.g., a peak in the extinction spectrum, an enhanced electromagnetic near-filed) but also heat up [1]. This phenomenon is highly investigated for medical applications, but it can be exploited also for the realization of optical devices. In our study we use COMSOL ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Assessment of the SNR, G-Factor and Relative B1- Fields of Medical Radiofrequency Arrays - new

G. Cook[1], F. Robb[2], M. Graves[1], D. Lomas[1]
[1]Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
[2]GE Healthcare Coils, Aurora, OH, USA

MRI relies upon a static magnetic field which creates a net magnetic moment from proton spins and radio-frequency fields are generated to excite this magnetic moment into a perpendicular plane, where it can be detected through the use of an array of conductive loops. The optimal size,shape and layout of these elements has been widely discussed in literature since the phased array's conception ...