Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Argon Plasma Simulations for Educational Purposes at Fontys University of Applied Physics

H. van Halewijn [1],
[1] Fontys University of Applied Physics, The Netherlands

At the Fontys University of Applied Physics (The Netherlands) a plasma etcher has been acquired for educational purposes. The machine operates at low power up to 30 Watt and is driven with a magnetic coil at 13.56 MHz. The use of COMSOL Multiphysics software will be discussed to simulate the temperature and mass fractions of the activated and ionized atoms in the gas. The simulations will be ...

Modeling the Effect of Headspace Steam on Microwave Heating of Mashed Potato - new

J. Chen[1], K. Pitchai[1], D. Jones[1], J. Subbiah[1]
[1]University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction: Domestic microwave ovens are widely used to heat food products, because of rapid and convenient heating. Nonuniform heating is the biggest issue in microwave heating process, which also causes food quality and safety issues. Microwave heating models are promising tools to assist in developing food products that deliver uniform heating. Due to intensive heating, moisture evaporation ...

The Simulation of Motion of a Slider upon a Stator Due to Frictional Force Using COMSOL Multiphysics® Software - new

H. B. Nemade[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The Surface Acoustic Wave (SAW) linear motor was studied which is developed utilizing the friction principle for driving. The principle says that, when a slider is placed on the Rayleigh waves generated on a stator, the slider moves in reverse direction of the wave due to friction between the stator and the slider. A LiNbO3 piezoelectric substrate is used as a stator where comb structured Al ...

太赫兹声子极化激元的产生及与金属天线的相互作用

吴强 [1], 潘崇佩 [1], 张琦 [1],
[1] 南开大学,天津,中国

“极化激元”是固体物理学中的重要概念,泛指各种极性元激发与光子的耦合。其中,声子极化激元是指晶格振动的声子与电磁场中的光子相互耦合的一种极化激元波。使用飞秒光在铁电晶体铌酸锂中通过光学非线性效应可产生声子极化激元,其频率位于太赫兹波段,在晶格的振动弛豫、太赫兹光谱、与介观微结构作用等领域已有广泛应用。 声子极化激元涉及电磁场和晶格场的耦合问题,其形式满足黄昆方程。我们使用 COMSOL Multiphysics® 的多物理场(偏微分方程组以及射频模块)模拟了块状铌酸锂晶体中产生声子极化激元波的产生和传输。 铌酸锂晶体作为太赫兹应用的集成化平台,可通过在平板波导上引入微结构实现对太赫兹波的调控。诸多手段中,太赫兹天线作为电磁场的传播场与局域场转换的关键部件,对太赫兹通信和太赫兹光谱等领域都有不可替代的作用。基于这一点,我们设计了一种尖端相对的棒状天线结构,使用 COMSOL ...

Metamaterial Based Patch Antenna with Broad Bandwidth Designed by COMSOL Multiphysics® Software

李学识 [1], 郑李娟 [1],
[1] 广东工业大学,广州,中国

A patch antenna based on metamaterials of composite split-ring-resonators (CSRRs) and strip gaps is designed with COMSOL Multiphysics® software. The antenna is constructed by using CSRR structures in forms of circular rings on the patch and employing strip gaps on the ground plane. The signal is fed by a common microstrip line that connects the patch and the input port. The antenna is based on a ...

Plasma Scaling Leads the Transition from 2D to True 3D Models

J. Brcka [1],
[1] Tokyo Electron U.S. Holdings, Inc., Austin, TX, USA

Introduction: In inductively coupled plasma (ICP) systems the inductive antenna is coupled to the excited plasma inside the low pressure gas reactor. A multi-ICP system can be used for increased area processing and provide additional variables for controlling the plasma. However, assembling the source from individual sources changes the symmetry of the system. Simulation of plasmas in ...

Impact of a 3D EM Model Configuration on the Direct Optimization of Microstrip Structures

Z. Brito-Brito[1], J. E. Rayas-Sánchez[1], J. C. Cervantes-González[2], C. A. López[2]
[1]The Jesuit University of Guadalajara. Dept. of Electronics, Systems and Informatics, Jalisco, México
[2]Intel Guadalajara Design Center, Jalisco, México

The EM optimization of a coarsely discretized model of a microstrip band-pass filter implemented in COMSOL Multiphysics® was realized using two different model configurations. We presented a systematic methodology to find an appropriate 3D EM model configuration on a direct EM optimization of a low fidelity models. It was confirmed that the direct EM optimization of coarse models in COMSOL could ...

Eigen and Coupled Modes on Nanoparticle Aggregate Arrays - new

M. Csete[1], A. Szalai[1], E. Csapó[2], A. Somogyi[1], I. Dékány[2]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2]MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Szeged, Hungary

Novel class of artificial optical antennas are of great interest in biosensing applications of nanoplasmonics due to their unique and tunable spectral properties. Silver colloid spheres covered with L-cysteine were studied experimentally by spectroscopy and TEM and numerically by a COMSOL Multiphysics® simulation. Experimental studies revealed that the Ag NP-Cys core-shell conjugates prefer to ...

Design and Optimization of Multilayer Ideal Cloak

B. Choudhury [1], M.H. Jyothi [1], D. V. Bipin [1],
[1] Centre for electromagnetics, CSIR-National Aerospace Laboratories, Bangalore, Karnataka, India

The development in metamaterial science and technology has created many exhilarating applications from microwave to optical frequency region in which invisibility cloaking is one of the exciting application. In recent years, the RCS reduction characteristics through cloaking structures have been explored by the aerospace researchers, as a novel concept to achieve stealth platform. This paper ...

A Reliable Approach to Estimate Surface-enhanced Raman Scattering Intensity of Metal Nanostructures

En-Ming You [1], Jun Yi [1], Song-Yuan Ding [1,2],
[1] State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
[2] Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, China

Surface-enhanced Raman scattering (SERS) is a fingerprint spectroscopy whose sensitivity is down to single molecule level. The mechanism of SERS is mainly contributed to huge enhancement of local electric field, which originated from surface plasmon resonance of metal nanostructures. It is very important to exactly calculate the local enhancement in the electric field strength for right ...