Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computational Simulation of Gold Core/Shell Nanostructures for Near-Field Transducers in Heat-Assisted Magnetic Recording - new

J. Bennington[1]
[1]Queen's University Belfast, Belfast, Northern Ireland, UK

A recurring problem, in heat assisted magnetic recording is the build-up of thermal energy in the near-field transducer leading to NFT deformation and the cessation of operation. A mechanism to dissipate this excess heat in the NFT without greatly effecting its’ plasmonic response is therefore required. The RF Module and COMSOL Multiphysics® software are used to investigate the plasmonic ...

Analysis of a Planar Inverted-F Mobile Handset Antenna with Reduced Radiation Towards the Human Head

C. Anandan[1]
[1]Cochin University of Science and Technology, Cochin, Kerala, India

This paper deals with the simulation and analysis of SAR and temperature distribution induced by a Planar Inverted-F Antenna on human head model using COMSOL Multiphysics® software. The goal of this paper is to compare the SAR and temperature distributions of omni-directional PIFA with that of a PIFA with reduced radiation towards human head. The two antennas are designed to operate at 900 MHz ...

Plasma Scaling Leads the Transition from 2D to True 3D Models

J. Brcka [1],
[1] Tokyo Electron U.S. Holdings, Inc., Austin, TX, USA

Introduction: In inductively coupled plasma (ICP) systems the inductive antenna is coupled to the excited plasma inside the low pressure gas reactor. A multi-ICP system can be used for increased area processing and provide additional variables for controlling the plasma. However, assembling the source from individual sources changes the symmetry of the system. Simulation of plasmas in ...

Numerical Optimization Technique for the Optimal Design of the Surface Plasmon Grating Coupler

C. Caiseda[1], V. Aksyuk[2], I. Griva[3]
[1]Inter American University of Puerto Rico, Bayamon, PR, USA
[2]National Institute of Standards and Technology, Gaithersburg, MD, USA
[3]George Mason University, Fairfax, VA, USA

The optimal design of the grating coupler for surface plasmon generation is revisited for its interdisciplinary importance in the efficient use of energy, and the strong dependence of the energy convergence rate of the system on the design. This work contributes a comprehensive gradient based numerical optimization technique to optimize both geometry of the grating and parameters of the ...

Visible Spectral Reflectance Analysis in a Metal-Insulator-Metal (MIM) Multilayer with COMSOL Multiphysics

Y. Oshikane[1], K. Murai[1]
[1]Osaka University, Suita City, Osaka, Japan

We are developing a reflective metal-insulator-metal (MIM) filter with narrow band absorption. In the MIM structure, the interaction between subwavelength multilayer and visible light, and the resultant surface plasmon resonance (SPR) in specific illumination conditions must be understood. Such electromagnetic field interactions have been analysed using COMSOL Multiphysics and RF Module.

Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres

K. Ehrhold[1], S. Christiansen[1,2], and U. Gösele[1]
[1]Max Planck Institute of Microstructure Physics, Halle, Germany,
[2]Institute of Photonic Technology, Jena, Germany

Plasmonics is a new branch of the fascinating field of photonics and develops concepts to quench light beyond the diffraction limit and enhance electromagnetic fields. These enhancements occur in metals as localized surface plasmon polaritons (LSP) a coupling of the surface density oscillations of the electron gas to the incident light. With threedimensional nano-structures of coinage metals ...

Argon Plasma Simulations for Educational Purposes at Fontys University of Applied Physics

H. van Halewijn [1],
[1] Fontys University of Applied Physics, The Netherlands

At the Fontys University of Applied Physics (The Netherlands) a plasma etcher has been acquired for educational purposes. The machine operates at low power up to 30 Watt and is driven with a magnetic coil at 13.56 MHz. The use of COMSOL Multiphysics software will be discussed to simulate the temperature and mass fractions of the activated and ionized atoms in the gas. The simulations will be ...

Model of a Pulsed Radiofrequency Technique for Pain Relief

E. Ewertowska [1], M. Trujillo [2], E. Berjano [1],
[1] Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
[2] Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain

Radiofrequency ablation is one of the common methods used to treat pain, movement or mood disorders. It bases on the electromagnetic energy provided to the selected tissue when an alternating current is applied. The resistive heating produced in this process provokes temperature rise in target tissue and generates lesion for intended therapeutic effects. However, in case when no tissue damage is ...

Using COMSOL to Solve for Currents along a Thin-Wire Antenna Excited by a Lumped Source

A. Shoory, A. Smorgonskiy, and F. Vega
Electromagnetic Compatibility (EMC) group, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

In this paper, we will present simulation results obtained using COMSOL RF module for the current along a wire antenna in both frequency and time domains. The structure is excited through a lumped (voltage or current) source at its center. For the frequency domain simulations we compare the results with the Numerical Electromagnetics Code (NEC-4) and for the time domain results we compare them ...

Patch Antenna Model for Unmanned Aerial Vehicle

T. Eppes, I. Milanovic, and S. Thiruvengadam
University of Hartford
West Hartford, CT

Patch antennas are widely used in communications links with unmanned aerial vehicles. Their hemispherical send and receive patterns enable the systems to maintain radio frequency contact over a wide range of vehicular attitudes. A microstrip-fed design offers other attractive features including lightweight, inexpensive, and a 3-D structure that can be easily integrated into the fuselage. This ...