Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Dispersion Analysis in Coaxial Cables at High Frequencies

S. C. Hegde[1]
[1]VIT University, Vellore, Tamil Nadu, India

The coaxial cable is one of the most commonly used bandwidth limited signal transmission line.Dispersion is a signal distortion phenomenon which arises due to frequency dependence of phase velocity of signal components. This phenomenon was explained through time domain approach by studying time taken by signals of various frequencies to propagate through the cable, which eventually may cause ...

Study of Subwavelength Gratings to Understand Their Polarization Behaviour

M. G. Sridharan[1], A. Prabhakar[2], and S. Bhattacharya[2]
[1]Photonics Group, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India
[2]Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Phase gratings are used in many applications owing to their high transmission and thus higher diffraction efficiencies. COMSOL is based on finite element modeling and is chosen for 2 reasons; firstly, because it can handle complex 2-D and 3-D geometries and secondly, it can handle the vector nature of these structures. The objective of the design is to compare the results of a commonly used ...

Radio Frequency Resonator for Continuous Monitoring of Microfluidic Droplet Size Dispersity

D. Conchouso [1], G. Mckerricher [1], D. Castro [1], A. Arevalo [1], I. G. Foulds [2]
[1] King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
[2] School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

Parallelization of droplet microfluidics is a challenging task because of the complex fluid mechanics coupling between parallel devices. Failure of few droplet generators can influence the size distribution of the final product and the correct operation of the neighbor devices. One of the typical causes of failure is channel clogging, in which one of the phases cannot flow through the ...

Optical and Electrical Modeling of Three Dimensional Dye Sensitized Solar Cells

P. Guo[1]
[1]Northwestern University, Evanston, IL, USA

Dye sensitized solar cells (DSSCs) have received tremendous attention as alternative photon harvesting devices. While the sintered TiO2 nanoparticle network attached with dye molecules achieves efficient photon absorption, the electrons have to diffuse through the long TiO2 network to reach the contact, resulting in a high electron density and thus increased recombination. Extensive research ...

Numerical Analysis on Plasmonic Nano-Cucumber Achieving Large EFs and Wide Tuneability of the Peak

A. Zare [1], E. Cutler [1], H. Cho [1],
[1] Center for Biomedical Engineering & Science, University of North Carolina - Charlotte, Charlotte, NC, USA

INTRODUCTION: Researchers in the biomedical field have recently become interested in the potential applications of plasomics. Surface plasmon resonance based on optical properties of metallic nanostructures can be used for detection of special biological targets. Gold nanostructures with different shapes and sizes have been designed to achieve high enhancement factor (EF), wide range of ...

Plasmonics of Nano-Gaps - new

T. Hutter[1], S. Mahajan[2], S. R. Elliott[1]
[1]University of Cambridge, Cambridge, UK
[2]University of Southampton, Southampton, UK

Plasmons, i.e. the collective oscillations of electrons in a metallic nano-structure, lead to strong light scattering, absorption and an enhancement of the local electromagnetic field. In this work, the local electric-field enhancement in a system of dielectric nanoparticles placed very near to a metallic substrate is studied and discussed. Finite-element numerical simulations were used in ...

Modeling Microwave Heating During Batch Processing of a Liquid Sample in a Single Mode Cavity

S. Curet [1], F. Bellicanta Begnini [1], O. Rouaud [1], L. Boillereaux [1]
[1] L’UNAM Université, ONIRIS, CNRS, GEPEA, Nantes, France

The use of microwaves for heating purposes of dielectric materials is encountered in many industrial applications (food processing, chemistry, material engineering and medical applications). In most of these thermal applications, the prediction of the temperature evolution within the processed materials is of primary interest in order to optimize the treatment (Chandrasekaran et al., 2013). In ...

Thermal Analysis of Metamaterial for High Energy Microwave (HEM) Devices

Vaishali Rawat[1], Sougata Chatterjee[2], Shantanu Das[3], S.N.Kale[1]
[1]Defense Institute of Advanced Technology, Pune, India
[2]Giant Metrewave Radio Telescope,Tata Institute of Fundamental Research,Pune, India
[3]Reactor Control Division, B.A.R.C., & Adjunct Faculty, DIAT, Pune, India

Metamaterial [1, 2] is an artificially structured material where it’s electrical (ϵ), magnetic (μ) and its refraction properties (n) are simultaneously negative in narrow frequency band. Currently, metamaterials are being widely used in microwave and radio frequencies as devices [3, 4] like filter, coupler, antenna etc. However, the applicability of metamaterial as High Energy Microwave (HEM) ...

Modeling Dielectric Heating: A First Principles Approach

R. W. Pryor [1],
[1] Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

Dielectric heating is an important, widely employed electromagnetic heating technology utilized by consumers, small businesses and industry. This model is used to explore the physical differences manifested when different frequencies are utilized to execute the heat generation process on similar materials in similar geometries. This model is of interest to people with applications in RF or ...

Analysis of Magnetically-coupled Human Body Communications

S. A. Rocke [1], Daniel Ringis [1], Jeevan Persad [1],
[1] Department of Electrical and Computer Engineering, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago

Human body communications (HBC) uses the human body as a transmission medium to connect sensors and actuators in, on or in close proximity to the human body. The HBC approach offers tremendous potential for the design and implementation of emerging personalized healthcare systems, as well as security, and multimedia communications applications [1]. Currently two HBC mechanisms have been ...