Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

On the Formation of a Sticking Layer on the Bearing during Thin–Section Aluminium Extrusion

X. Ma[1], M.B. de Rooij[2], and D.J. Schipper[2]

[1]Materials Innovation Institute, Enschede, The Netherlands
[2]University of Twente, Enschede, The Netherlands

This paper describes the use of COMSOL Multiphysics® to determine the shear layer thickness in thin–section aluminum extrusion, based on the minimum work criterion. The studied two aluminum alloys are AA 6063 and AA 7020. The results show that a continuous shear layer featuring shear localization due to localized thermal softening is not possible to form under typical thin&ndash ...

Using COMSOL for Smart Determination of Material Properties Using Inverse Modeling Techniques

J. van Schijndel, S. Uittenbosch, and T. Thomassen
Eindhoven University of Technology
Eindhoven, Netherlands

The paper presents the development of a method that determines building material and surface properties using relative simple and low-budget experiments, The method comprehends an optimal design of an experimental set up for smart determination of heat and moisture properties using both normal and inverse modeling techniques. It is concluded that the suggested methodology of the inverse ...

A Simplified Numerical Model for Simulating Sliding Door and Surgical Staff Movement in an Operating Theater

C. Balocco[1]
[1]Dipartimento di Energetica, UniversitĂ  di Firenze, Firenze, Italy

This paper deals with a numerical investigation on sliding door and people moving effects on the indoor climate of a standard ISO5 class OT with an ultraclean air filter system and a total ceiling unidirectional diffuser. A simple method to analyze the effects on the OT climate by different sliding door conditions combined with crossing persons and persons with a stretcher crossing is provided. ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, ...

Optimization of Bending-Type Ultrasonic Transducers with Rotational Symmetry Using COMSOL Multiphysics®

M. Jungwirth[1] and M. Rabl[1]

[1]Wels School of Engineering, Upper Austria University of Applied Sciences, Wels, Austria

Ultrasonic sensors are commonly used for a wide variety of non-contact presence, proximity or distance measuring applications in industry, especially the automotive branch. This paper shows how the radiation properties of bending-type ultrasonic transducers with rotational symmetry depend on shape, dimensions and material parameters. In order to determine their dependencies, the behavior of such ...

Rapid Control Prototyping for the Production of Functionally Graded Materials with Tailored Microstructural Properties Utilizing Comsol Multiphysics

J. Clobes[1,2], H.-J. Watermeier[2], M. Alsmann[2], H. H. Becker[2], and K. Steinhoff[1]
[1]University of Kassel - Chair of Metal Forming Technology, Kassel, Germany
[2]Volkswagen AG, Kassel, Germany

Within the field of hot metal bulk forming the demand arises for fully three-dimensionally tailored properties at the microstructural level, nevertheless, reaching a predefined geometry with such tailored properties puts high requirements on the control mechanisms utilized in the process chain for combined heating, metal forming, and cooling processes. A simulation based rapid control ...

Sequential Simulation in COMSOL using Differential Equations to Perform Digital Switching

L. Lam, and R. Darling
University of Washington
Seattle, WA

Many physical systems contain sequential modes of operation. The sequence is one-way and switching between modes is dependent upon specific internal parameters of the system itself. While COMSOL provides the flexibility to perform time-domain simulation and time-based modifications of boundary conditions, simulating sequential systems based upon internal physical variables in COMSOL can be a ...

Numerical Experiments on Deconvolution Applied to LES in the Modeling of Turbulent Flow

O. Toscanelli[1], V. Colla[1]
[1]Scuola Superiore S. Anna, Pisa, Italy

The Large Eddy Simulation is an important method to simulate turbulent flow. It does not produce a closed system of equations, to achieve this it is necessary to model the not-closed terms. The deconvolution can be used for this purpose. In this study some numerical experiments on this topic are performed with COMSOL Multiphysics®. The main objectives are to find an efficient way to implement ...

COMSOL-Based Nuclear Reactor Kinetics Studies at the HFIR

D. Chandler[1], J. Freels[2], R. Primm III[3], and G. Maldonado[1]
[1]Department of Nuclear Engineering, University of Tennessee, Knoxville, TN
[2]Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN
[3]Primm Consulting, LLC., Knoxville, TN

The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the High Flux Isotope Reactor’s (HFIR) compact core. The space-time simulations employed ...