Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

COMSOL Multiphysics Models for Teaching Chemical Engineering Fundamentals: Absorption Column Models and Illustration of the Two-Film Theory of Mass Transfer

W. Clark
Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA

COMSOL® models have been developed for teaching gas absorption fundamentals. Model results are compared to environmentally significant experimental results for removing CO2 and SO2 from air using water as solvent. For concentrated gas mixtures, the models are shown to be equivalent to but easier to use than the traditional graphical integration method and to a solution method developed with ...

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics®

F. Yilmaz[1] and B. Karasözen[2]

[1]Department of Mathematics, Gazi University, Ankara, Turkey
[2]Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey

We use COMSOL Multiphysics® for solving distributed optimal control of un- steady Burgers equation without constraints and with pointwise control constraints. Using the first order optimality conditions, we apply projection and semi-smooth Newton methods for solving the optimality system. We have applied the standard approach by integrating the state equation forward in time and the ad- joint ...

Sequential Simulation in COMSOL using Differential Equations to Perform Digital Switching

L. Lam, and R. Darling
University of Washington
Seattle, WA

Many physical systems contain sequential modes of operation. The sequence is one-way and switching between modes is dependent upon specific internal parameters of the system itself. While COMSOL provides the flexibility to perform time-domain simulation and time-based modifications of boundary conditions, simulating sequential systems based upon internal physical variables in COMSOL can be a ...

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using a MATLAB-COMSOL Based Model

E. Pelster, and D. Wenger
Wenger Engineering GmbH
Ulm, Deutschland

Electric construction components exposed to alternating high voltage have to withstand a significant amount of thermal loads and, resulting from the changes in Temperature , structural stresses. In order to achieve minimization of these loads, optimizing the geometry can be a helpful tool in the design process. In this study COMSOL is used to predict thermal and mechanical loads on a high ...

Simulation and Performance Analysis of Nanowire Design with Different Variants

Boopathi S[1], Ms.E.Malar[1], Deepan Chakravarthi P[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamil Nadu, India

This paper deals with an integrated numerical and experimental analysis work aiming at the investigation of the thermal stress on nanowires in electronic gadgets especially computers and mobile phones. The comparative study of the nanowires are analyzed through the Thermal Stress physics using different variants such as Cu, Al, ZnO, Si(c), SiO2 which can be used in sensors, solar cells, LCD, ...

Conducting Finite Element Convergence Studies Using COMSOL 4.0

M.K. Gobbert, and D.W. Trott
University of Maryland, Baltimore, MD, USA

We will show how to carry out convergence studies of the FEM error on a sequence of progressively finer meshes in COMSOL Multiphysics on the example of Lagrange elements of varying polynomial degrees, which will also bring out the benefit of using higher order elements. The sample studies will focus on Lagrange elements of degree 1 through 5. For these elements, the convergence order of the ...

A Simplified Numerical Model for Simulating Sliding Door and Surgical Staff Movement in an Operating Theater

C. Balocco[1]
[1]Dipartimento di Energetica, Università di Firenze, Firenze, Italy

This paper deals with a numerical investigation on sliding door and people moving effects on the indoor climate of a standard ISO5 class OT with an ultraclean air filter system and a total ceiling unidirectional diffuser. A simple method to analyze the effects on the OT climate by different sliding door conditions combined with crossing persons and persons with a stretcher crossing is provided. ...

Toward Energy Zero Building: A COMSOL Multiphysics® Model of Building and its HVAC System - new

F. Bruno[1]
[1]ENERSPACE Srl, Genoa, Italy

A model built with COMSOL Multiphysics® to exploit meteorological forecasts and instant outdoor meteorological data (temperature, solar radiation, moisture, wind speed and direcition, etc.) together with indoor ambient data (air temperature, radiant temperature of enclosures, etc), building parameters (mass, orientation, surface, structural composition, etc.) and historical consumption of ...

Handling Tessellated Free Shape Objects with a Morphing Mesh Procedure in COMSOL Multiphysics®

P. Franciosa[1] and S. Gerbino[2]
[1]Faculty of Engineering, University of Naples Federico II, Napoli, Italy
[2]Faculty of Engineering, University of Molise, Campobasso, Italy

Tessellated models are more and more used in several engineering fields. The need to use such models to quickly perform computer simulations related to coupled physical phenomena, implies the use of dedicated software, allowing to solve, into an integrated environment, multiphysics problems. In the present work, COMSOL Multiphysics® has been used and its ability to handle tessellated models ...