Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

3D Simulation of Laser Interstitial Thermal Therapy in the Treatment of Brain Tumors

M. Nour [1], A. Lakhssassi [1], E. Kengne [1], M. Bougataya [1],
[1] Université du Québec en Outaouais, Gatineau, QC, Canada

Abstract: Due to the restriction of the number of probes that a patient can tolerate, and the inaccurate information provided by the invasive temperature measurements, which provide information only at discrete points, a mathematical model simulation is more effective to help doctors in planning their thermal treatment doses. This will maximize therapeutic effects while minimizing side effects. ...

Implementation of COMSOL Multiphysics® in Simulink® S-Functions, Revisited - new

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

COMSOL Multiphysics® has standard facilities to export models to SimuLink®. Normally, the standard export works well if the solvers, available in SimuLink, can handle the problem. However, if a model in COMSOL Multiphysics® needs special solvers, for example airflow or other non-linear problems, the standard export to SimuLink is often not suitable, because the standard solvers of SimuLink® ...

Heat Transfer in Borehole Heat Exchangers from Laminar to Turbulent Conditions - new

E. Holzbecher[1], H. Räuschel[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Borehole heat exchangers (BHE) in connection with heat pumps and floor heating in many countries are becoming an alternative to conventional heating or cooling systems using fossil resources. We describe how 1D components for heat transport in pipes can be coupled with a 2D or 3D component for the ground. Thermal conductances are derived for laminar, transitory and turbulent flow conditions in ...

Load Cell Design Using COMSOL Multiphysics

A. Marchidan[1], T. Sullivan[1], J. Palladino[1]
[1]Trinity College, Hartford, CT, USA

COMSOL Multiphysics was used to design a binocular load cell. A three-dimensional linear solid model of the load cell spring element was studied to quantify the high-strain regions under loading conditions. The load cell was fabricated from 6061 aluminum, and general purpose Constantin alloy strain gages were installed at the four high-strain regions of the spring element. The four gages were ...

Inductive Conductivity Measurement of Seawater

R. W. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model of an O-Core Inductive Conductivity Measurement Sensor for Seawater. This sensor model is built using the ...

Modeling Conventional Swing of a Cricket Ball

R. Latchman [1], A. Pooransingh [1],
[1] University of the West Indies - St. Augustine, St. Augustine, Trinidad and Tobago

Conventional swing is one phenomenon which a bowler uses to gain an advantage over the batsman. This study involved simulating conventional swing in the CFD Module of COMSOL Multiphysics® software and comparing the simulated results with experimental results of previous researchers. The variation in the side and drag forces on the ball were investigated by varying the velocity, seam angle and ...

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

M. Gobbert [1], K. M. Kalayeh [2], J. S. Graf [1],
[1] Department of Mathematics and Statistics, University of Maryland - Baltimore County, Baltimore, MD, USA
[2] Department of Mechanical Engineering, University of Maryland - Baltimore County, Baltimore, MD, USA

Numerical theory provides the basis for quantification of the accuracy and reliability of a FEM solution by error estimates on the FEM error vs. the mesh spacing of the FEM mesh. This paper presents techniques needed in COMSOL Multiphysics® software to perform computational studies for elliptic test problems in two and three space dimensions that demonstrate this theory by computing the ...

Modeling Linear Viscoelasticity in Glassy Polymers using Standard Rheological Models

M. Haghighi-Yazdi, and P. Lee-Sullivan
University of Waterloo
Waterloo, ON
Canada

In this study, a capability has been developed for modeling the linear viscoelastic behaviour of a glassy polymer using COMSOL Multiphysics®. The two rheological models by Maxwell and Kelvin-Voigt were used for modeling stress relaxation and creep loading behavior, respectively, of a typical gas pipe under two modes of plane stress and plane strain. An advantage of the developed model is its ...

Modelling of Pressure Profiles in a High Pressure Chamber using COMSOL Multiphysics

P. S. Rao[1], C. K. Chandra[1]
[1]Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

High Pressure Processing (HPP) is a leading non-thermal food processing technology that is often cited as a major technological innovation in food preservation. Although it is very early to place this emerging technology among the list of breakthroughs in food processing, HPP has started to become a viable commercial alternative for pasteurisation of value added fruits, vegetables, meat, and ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...