Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulating Organogenesis in COMSOL Multiphysics®: Parameter Optimization for PDE-based Models

D. Iber[1], D. Menshykau[2], P. Germann[2], L. Lermuzeaux[2,3]
[1]D-BSSE, ETH Zurich, Switzerland, SIB, Basel, Switzerland
[2]D-BSSE, ETH Zurich, Basel, Switzerland
[3]Department of Bioengineering, University of Nice-Sophia Antipolis, Nice, France

Morphogenesis is a tightly regulated process that has been studied for decades. Previously we developed data-based mechanistic models for a range of developmental processes with a view to integrate the available knowledge and to better understand the underlying regulatory logic. In our previous papers on simulating organogenesis in COMSOL Multiphysics® we discussed methods to efficiently solve ...

The Influence of Core Shape and Material Nonlinearities to Corner Losses of Inductive Element

M. Puskarczyk[1], B. Jamieson[1], W. Jurczak[1]
[1]ABB Corporate Research Center, Kraków, Poland

The effects of sharp corners on the flux distribution in a ferromagnetic core are modeled using COMSOL Multiphysics® to determine the time-domain flux density for an applied field which is uniform in the non-corner section of the core. The frequency spectrum of the flux distribution is calculated for testing points through the corner and the effects of harmonic frequencies on the flux and loss ...

Modeling Conventional Swing of a Cricket Ball

R. Latchman [1], A. Pooransingh [1],
[1] University of the West Indies - St. Augustine, St. Augustine, Trinidad and Tobago

Conventional swing is one phenomenon which a bowler uses to gain an advantage over the batsman. This study involved simulating conventional swing in the CFD Module of COMSOL Multiphysics® software and comparing the simulated results with experimental results of previous researchers. The variation in the side and drag forces on the ball were investigated by varying the velocity, seam angle and ...

Design of Solar Thermal Dryers for 24-hour Food Drying Processes

F. S. Alleyne [1], R. R. Milczarek [1],
[1] Healthy Processed Foods Research Unit, U.S. Department of Agriculture, Albany, CA, USA

Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or material attributes that allow them to be selected as candidates in solar dryer designs. 1–7 ...

Extraction of 13.56 MHz NFC-Reader Antenna Parameters for Matching Circuit Design

Prof. Dr.-Ing. habil. A. K. Palit [1],
[1] ZF-Lemfoerder Electronic GmbH, ZF-Friedrichshafen AG. Group, Espelkamp, Germany

Introduction: RFID system uses a Transponder and the near field communication (NFC) antenna and a matching circuit (Figure-1) in which at least latter two must be optimally designed for a higher efficiency. Typically, RFID antennas are flat inductive coils with 2 to 4 turns and are printed directly on the PCB. The larger antenna size implies larger operating distance whereas, the number of ...

Heat Transfer in Borehole Heat Exchangers from Laminar to Turbulent Conditions - new

E. Holzbecher[1], H. Räuschel[1]
[1]Georg-August Universität Göttingen, Göttingen, Germany

Borehole heat exchangers (BHE) in connection with heat pumps and floor heating in many countries are becoming an alternative to conventional heating or cooling systems using fossil resources. We describe how 1D components for heat transport in pipes can be coupled with a 2D or 3D component for the ground. Thermal conductances are derived for laminar, transitory and turbulent flow conditions in ...

Modeling Wear of Journal Bearings

P. Bergmann [1], F. Grün [1],
[1] Chair of Mechanical Engineering, Montanuniversität Leoben, Leoben, Austria

Wear in hydrodynamic journal bearings resulting from solid contact in the mixed friction regime becomes an increasingly prominent topic leading to the necessity of numerical wear evaluations. A numerical method tackling this topic based on Archard’s wear law is presented and applied on a close-to-component journal bearing test rig. This approach allows a validation of numerical results by ...

Integration of the DeProF Model for Two-Phase Flow in P.M. into the Subsurface Flow Module

M. S. Valavanides [1], E. D. Skouras [2], A. N. Kalarakis [3], V. N. Burganos [2],
[1] TEI Athens, Athens, Greece
[2] FORTH/ICE-HT, Patras, Greece
[3] TEI of Western Greece, Patras, Greece

Relative permeability maps for steady-state two-phase flow in porous media, delivered by implementing the DeProF model [1] algorithm, were integrated within COMSOL Multiphysics® software [2] to resolve field-scale flows in porous media. The mechanistic model DeProF [1], predicts the relative permeability of oil and water in terms of the capillary number, Ca, the oil/water flowrate ratio, r, ...

Double Pipe Heat Exchanger Modelling - COMSOL Uses in Undergraduate Education

L. Desgrosseilliers, and D. Groulx
Mechanical Engineering
Dalhousie University
Halifax, NS
Canada

A cornerstone of Chemical and Mechanical Engineering undergraduate programs the world over is the experimental and theoretical study of heat exchange. Graduating engineering students gain some appreciation in their lab course by comparing empirical correlations combined with the thermodynamics of heat exchange with the real operation of a counter-current, double pipe, single-phase heat exchanger.

Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

S. Soprani [1], J. H. K. Haertel [1], K. Engelbrecht [1], B. S. Lazarov [2], O. Sigmund [2]
[1] Technical University of Denmark - Department of Energy Conversion and Storage, Roskilde, Denmark
[2] Technical University of Denmark - Department of Mechanical Engineering, Lyngby, Denmark

INTRODUCTION: Active cooling systems represent a possible solution to the electronics overheating that occurs in downhole tools operating on wireline, a cabling technology used to remotely control the downhole devices during oil and gas well interventions, in high temperature wells (150 ⁰C < T < 200 ⁰C) [1]. The integration of a thermoelectric cooler (TEC) into a downhole tool electronics ...