See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The void shape evolution of silicon is a process driven mainly by surface diffusion which leads to a geometrical transformation of trenches etched in silicon wafers due to surface energy minimization. The temperature, the ambient gas and the annealing time affect the velocity of the ... Read More
The primary aim of using jet as mixer, like in case of other mixing devices, is to increase the heat and mass transfer between the phases. Beside the injection position the geometry of the jet mixer and the injection nozzle has a major effect on the injection. In our study COMSOL ... Read More
The understanding of the tracer migration in two-phase porous media systems and its reaction over the fluid-fluid interfaces is a challenging task important for a number of engineering applications, e.g. oil recovery, carbon capture and storage in geological reservoirs, remediation ... Read More
Droplet flow at microscopic scale is often used to enhance many pharmaceuticals and industrial processes (i.e. liquid–liquid micro-extraction, nanoparticle synthesis, slow reactions in microfluidic devices, etc.). In all these processes, the mass transfer rate, at the interface between ... Read More
In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing ... Read More
The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes ... Read More
Capacitive deionization (CDI) is a desalination technology which is based on the storage of ions in the electrical double layer of a pair of oppositely polarized porous carbon electrodes, which are usually assembled using activated carbon particles (Figure 1). It is efficiently deployed ... Read More
The annular reactor is a very useful design to carry many chemical reactions. In this study, COMSOL Multiphysics® software was used to study the isothermal mass transfer from the inner side of the outer tube of the annular reactor in the range of 200 Read More
Horizontal-Flow Constructed Wetlands (HFCWs) are a particular type of biofilter, and as such they rely mostly on the activity of bacterial communities to treat wastewater. Bacterial growth in HFCWs induces dramatic changes in its hydraulic and hydrodynamic behaviour (bioclogging), which ... Read More
Packed beds are important in the chemical industries. Computational fluid dynamics (CFD) can simulate detailed flow and scalar transport in packed beds for improved understanding and quantitative information. We present simulations of single-phase gas flow, conjugate heat transfer and ... Read More
