Eigenfrequency Shifts Caused by Temperature Changes

Application ID: 49331

This example explores the shift in natural frequencies caused by changing the temperature. One study investigates a doubly clamped beam where both ends are fixed, while the other study looks at a cantilever beam where only one end is fixed.

The following effects are studied:

  • Stress stiffening
  • Change in size
  • Constraint effects
  • Temperature-dependent Young's modulus

Results show that the clamped beam is dominated by stress softening where constrained expansion causes compressive stresses.

On the other hand, the cantilever beam shows a very good fit to analytical values based on the small changes in geometry caused by the thermal expansion.

The temperature dependence of Young's modulus is shown to be an important factor.

It is displayed that even at extreme thermal expansions, the current approach provides excellent accuracy.

Get more details related to this example in the following blog post: "How to Analyze Eigenfrequencies That Change with Temperature"

This model example illustrates applications of this type that would nominally be built using the following products: