The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

Determining the Reaction Order from Pressure-Time Data

This model shows how to use the Parameter Estimation feature in the Reaction Engineering interface to find the rate constant and reaction order for the gas phase decomposition of di-tert-butyl-peroxide.

Neutralization of Chlorine in a Scrubber

This example studies the kinetics of the neutralization of chlorine gas in water solution. The model assumes that the fluid volume is perfectly mixed and constant. This means that the chlorine has dissolved to an almost saturated state (1·10-2 mol/m3) and that the hydroxide has also mixed well throughout, as would be the case for a very small amount of fluid in a scrubber. The study allows ...

Isothermal HI Reactor

For a perfectly mixed reactor with a predefined constant temperature, the reacting system’s energy balance is not needed to describe the system behavior. The behavior is defined as the composition and the production or consumption of species over time. Furthermore, because the reactor is perfectly mixed, the Reaction Engineering interface can also set up a model even though it has no information ...

Space-Dependent HI Reactor

This model deals with a reacting system comprising of an equimolar mixture of hydrogen and iodine gas which is allowed to react and form HI. Composition and temperature are allowed to vary both in space and time. This means that you have to define material balances, energy balances, and transport properties in the Reaction Engineering interface. These balances and properties are exported to ...

Nonisothermal HI Reactor

In the case of a perfectly mixed nonisothermal system, you have to set up both the time-dependent material and energy balances. There are no spatial concentration gradients because the system is perfectly mixed, so the Reaction Engineering interface can create a model without evaluating the material-transport properties.

51–55 of 55
Next |