The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Convection Cooking of Chicken Patties

When cooking food, such as a patty, in convection ovens there is a trade off in the heating method. If the patty is heated at a low oven temperature the cooking is slow and the patty dries out, resulting in a poor taste. If the patty is heated rapidly at a high temperature, it is difficult to get an even temperature in the patty. When the core is cooked the crust may be over-cooked. This ...

Optimizing a Thermal Process

A thermal processing scenario is modeled whereby two heaters raise the temperature of a gas flowing through a channel. The Optimization Module is used to find the heater power to maximize the outflow temperature, while maintaining a constraint on the peak temperature at the heaters themselves.

Thermal Modeling of a Microchannel Heat Sink

Thermal management has become a critical aspect of today’s electronic systems, which often include many high-performance circuits that dissipate large amounts of heat. Many of these components require efficient cooling to prevent overheating. Some of these components, such as processors, require a heat sink with cooling fins that are exposed to forced air from a fan. This discussion develops the ...

Out-of-Plane Heat Transfer for a Thin Plate

This example models heat transfer in a thin rectangular metal plate. Because the plate’s thickness is only 1/100 of its length and width, you can simulate the process using a 2D approximation. The plate has a fixed temperature at one end and is isolated at the other. A surrounding liquid cools the plate by convection. In addition, the model considers surface-to-ambient radiation.

Non-Isothermal MEMS Heat Exchanger

The example concerns a stainless-steel MEMS heat exchanger, which you can find in lab-on-a-chip devices in biotechnology and in microreactors such as for micro fuel cells. This model examines the heat exchanger in 3D, and it involves heat transfer through both convection and conduction. The model solves for the temperature and heat flux in the device and investigate the convective term’s ...

Disk-Stack Heat Sink

This problem follows a typical preliminary board-level thermal analysis. First perform a simulation of the board with some Integrated Circuits (ICs). Then, add a disk-stack heat sink to observe cooling effects. Finally, explore adding a copper layer to the bottom of the board in order to even out the temperature distribution. This exercise highlights a number of useful modeling techniques such ...

Flash Method

The flash method is widely used for measuring the thermal conductivity of a thin sample material that is about the size of a coin. The sample material is submitted to a laser pulse on one of its faces. In turn, the opposite face is heated up by around 1 K. As the pulse is uniform and well defined, you can measure the temperature variation on the other side. Thereby, you can measure the thermal ...

Silica Glass Block Coated with a Copper Layer

In this time-dependent model, a silica block of glass, coated with a thin copper layer is subjected to a heat flux. Copper is a highly conductive material, while the silica glass is of poor thermal conductivity, which sets up an highly-varied temperature differential. The model must therefore account for a highly conductive layer. This is done, using a the Highly Conductive Layer feature in ...

Concentric Tube Heat Exchanger

Finding the right dimensions for a heat exchanger is imperative to ensure its effectiveness. Other properties must also be considered in order to design a heat exchanger that is both of the right size and provides heated or cooled fluid of the right temperature. The Concentric Tube Heat Exchanger app computes these quantities for a heat exchanger made of two concentric tubes. The fluids can ...

Thermoelectric Leg

A thermoelectric leg is a fundamental component of a thermoelectric cooler (or heater). For example, a thermocouple is a thermoelectric module typically made of two thermoelectric legs: one made of p-type and of one n-type semiconductor material which are connected in series electrically and in parallel thermally.