The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Nonisothermal MEMS Heat Exchanger

The example concerns a stainless-steel MEMS heat exchanger, which you can find in lab-on-a-chip devices in biotechnology and in microreactors such as for micro fuel cells. This model examines the heat exchanger in 3D, and it involves heat transfer through both convection and conduction. The model solves for the temperature and heat flux in the device and investigate the convective term’s ...

Finned Pipe

Finned pipes are used for coolers, heaters, or heat exchangers to increase heat transfer. They come in different sizes and designs depending on the application and requirements. When the fins are placed outside the pipe, they increase the heat exchange surface of the pipe so that a cooling or heating external fluid can exchange heat more efficiently. When placed inside the pipe, it is the inner ...

Freeze-Drying

Freeze-drying, or lyophilization, is a process for drying heat-sensitive substances such as foods, blood plasma, and antibiotics. The wet substance is frozen and then, through sublimation, ice (or some other frozen solvent) is removed in the presence of a high vacuum. This example models the process of ice sublimation in a vial under vacuum-chamber conditions, a test case for many freeze-drying ...

Flash Method

The flash method is widely used for measuring the thermal conductivity of a thin sample material that is about the size of a coin. The sample material is submitted to a laser pulse on one of its faces. In turn, the opposite face is heated up by around 1 K. As the pulse is uniform and well defined, you can measure the temperature variation on the other side. Thereby, you can measure the thermal ...

Double-Pipe Heat Exchanger

Double-pipe heat exchangers, with their typical U-turn shape, are one of the simplest and cheapest type of heat exchangers used in the chemical process industry. This example studies the cooling of hot oil (130°C) by a cool oil (60°C) entering in counter-current. As the oils flow through the system, the material properties of both change with the varying temperature. The model uses the ...

Electronic Chip Cooling

This tutorial model uses a heat sink geometry from the Part Library. The tutorial shows different approaches to heat transfer modeling when studying the cooling of an electronic chip. In the first part, only the solid parts are modeled, while the convective airflow is modeled using *Convective Heat Flux* boundary conditions. In the second part, the model is extended to include a fluid domain ...

Silica Glass Block Coated with a Copper Layer

In this time-dependent model, a silica block of glass, coated with a thin copper layer is subjected to a heat flux. Copper is a highly conductive material, while the silica glass is of poor thermal conductivity, which sets up an highly-varied temperature differential. The model must therefore account for a highly conductive layer. This is done, using a the Highly Conductive Layer feature in ...

Radiative Heat Transfer in a Utility Boiler

This model uses the discrete-ordinates method (DOM) to analyze the radiative heat transfer in a utility boiler with internal obstacles. DOM is one of the most useful radiation models for prediction of radiative heat fluxes on the furnace walls of a combustion chamber. With this model, the behavior of the temperature and heat flux within the furnace and on the heat surfaces can be easily obtained ...

Radiation in a Cavity

This model shows how to build and solve a radiative heat transfer problem using the Heat Transfer interface. In particular, this 2D model illustrates the use of the surface-to-surface radiation feature. In this model, three surfaces form a cavity. Heat flux is set at two outer boundaries, while temperature is set on the third. The model's simple geometry, allows a comparison of results ...

Radiative Cooling of a Glass Plate

When producing glass, the glass melt is cooled down through radiation to form the final shape, subjecting it to stresses. Numerical treatment of radiative heat transfer, using the Radiative Transfer Equation (RTE), helps to optimize this process. COMSOL Multiphysics provides three discretization methods for modeling radiation in participating media and solving the RTE: the Rosseland ...