The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Inline Induction Heater

Ferritic stainless steels have become more and more popular in the food industry because of their relatively low and stable price and due to the absence of nickel in their components. Their resistance to corrosion can be improved by adding chromium or molybdenum, and their magnetic properties offer new techniques in food processing. The new Inline Induction Heater application computes the ...

Power Transistor

In every system where there is conduction of electric current, and where the conductivity of the material is finite, there will be electric heating. Electric heating, also referred to as Joule heating, is in many cases an undesired by-product of current conduction. This model simulates a system consisting of a small part of a circuit board containing a power transistor and the copper pathways ...

Turbulent Flow Through a Shell-and-Tube Heat Exchanger Cross Section

This model studies a part of a shell-and-tube heat exchanger where hot water enters from above. The cooling medium flows through the tubes that, in this model, impose a constant temperature at the walls. Furthermore, the tubes are assumed to be made of stainless steel and the heat flux is also modeled through them. The purpose of the model is to show the coupling between the k-epsilon ...

Condensation Risk in a Wood-Frame Wall

This 2D stationary model computes heat and moisture transport in a wall composed of different hygroscopic materials. A comparison with the Glaser method is given for the temperature and relative humidity solutions. The effect of the use of a vapor barrier is also investigated.

Heat Conduction in a Finite Slab

This simple example covers the heating of a finite slab and how the temperature varies with time. We will set up the problem in COMSOL Multiphysics after which we compare the solution to the analytical solution.

Thermophoresis

When a temperature gradient in a gas exists, suspended particles will tend to move from regions of high temperature to low. The force which produces this effect is called the thermophoretic force. Gas molecules colliding with a particle from the hot side have a higher velocity than the cold side, which results in a net force towards cold areas. This effect can be exploited to create thermal ...

Out-of-Plane Heat Transfer for a Thin Plate

This example models heat transfer in a thin rectangular metal plate. Because the plate’s thickness is only 1/100 of its length and width, you can simulate the process using a 2D approximation. The plate has a fixed temperature at one end and is isolated at the other. A surrounding liquid cools the plate by convection. In addition, the model considers surface-to-ambient radiation.

Concentric Tube Heat Exchanger

Finding the right dimensions for a heat exchanger is imperative to ensure its effectiveness. Other properties must also be considered in order to design a heat exchanger that is both of the right size and provides heated or cooled fluid of the right temperature. The Concentric Tube Heat Exchanger app computes these quantities for a heat exchanger made of two concentric tubes. The fluids can ...

Thermal Modeling of a Microchannel Heat Sink

Thermal management has become a critical aspect of today’s electronic systems, which often include many high-performance circuits that dissipate large amounts of heat. Many of these components require efficient cooling to prevent overheating. Some of these components, such as processors, require a heat sink with cooling fins that are exposed to forced air from a fan. This discussion develops the ...

Thermo-Photo-Voltaic Cell

This model illustrates an application that maximizes surface-to-surface radiative fluxes and minimizes conductive heat fluxes. A thermo-photo-voltaic (TPV) cell generates electricity from the combustion of fuel and through radiation. The fuel burns inside an emitting device that radiates intensely. Photo-voltaic (PV) cells—almost like solar cells—capture the radiation and convert it to ...