The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


MEMS Pressure Sensor Drift Due to Hygroscopic Swelling

For their integration in microelectronic circuits, MEMS devices are bonded on printed circuit boards and connected with other devices. Then, the whole circuit is often covered with an epoxy mold compound (EMC) to protect the devices and their interconnects with the board. The epoxy polymers used for such applications are subject to moisture absorption and hygroscopic swelling, which can lead to ...

Natural convection in a closed cavity with mass conservation

Only fully compressible flow can guarantee the mass conservation in time in a closed cavity where the temperature increases. This is a simple proof of concept using the "gravity" option available in V5.2A.

Temperature Field in a Cooling Flange

A cooling flange in a chemical process is used to cool the process fluid, which flows through the flange. The surrounding air cools the flange via natural convection. In the stationary model, the forced convection to the process fluid is modeled using a constant heat transfer coefficient. The natural convection cooling is modeled using tabulated empirical transfer coefficients that are ...

Soluble Lead-Acid Redox Flow Battery

In a redox flow battery electrochemical energy is stored as redox couples in the electrolyte, which is stored in tanks outside the electrochemical cell. During operation, electrolyte is pumped through the cell and, due to the electrochemical reactions, the individual concentrations of the active species in the electrolyte are changed. The state of charge of the flow battery is determined by ...

Simulation of Shock Absorber in Landing Gear

This model simulates the dynamics of the shock absorber used in a landing gear mechanism of an aircraft. It analyses the stresses, as well as the heat generated in the landing gear components due to the energy dissipated in the shock absorber. A prismatic joint, with spring and damper, is used to model the shock absorber assembly.

Atmospheric Corrosion

This model simulates atmospheric galvanic corrosion of an aluminum alloy in contact with steel. The electrolyte film thickness depends on the relative humidity of the surrounding air and the salt load density of NaCl crystals on the metal surface. Empirical expressions for the oxygen diffusivity and solubility are also included in the model in order to derive an expression for the limiting ...

Mixer with Free Surface and Bottom Impeller

Time-dependent rotating machinery k-epsilon turbulence model of a mixer, including free surface deformation. The model equations are first solved for a frozen rotor study. The solution from the frozen rotor study is used as initial condition for the time-dependent studies, which include the displacement of the impeller. Two possible time dependent studies are available for two different rotating ...

One-Family House Acoustics Analyzer

The One-Family House Acoustics Analyzer app is used to assess noise propagation in coupled rooms inside of a two-story house consisting of ten rooms. The app determines the sound pressure level (SPL) distribution in the house based on a number of sources that are interactively placed throughout the home. It represents a classical room acoustics problem where engineers or architects want to ...

Optimization of a Tesla Microvalve

This model performs a topological optimization for a Tesla microvalve. A Tesla microvalve inhibits backwards flow using friction forces rather than moving parts. The design can be optimized by distributing a specific amount of material within the modeling domain. The goal is to maximize the ratio of the pressure drop for the forwards and backwards flow across the device.

Fast Numerical Modeling of a Conical Horn Lens Antenna

An axisymmetric 3D structure such as a conical horn antenna can be simulated in a fast and efficient way using only its 2D layout. In this model, the antenna radiation and matching characteristics are computed very quickly with respect to the dominant TE mode from the given circular waveguide by simulating the 2D axisymmetric geometry of an 3D antenna structure.