The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Electric Shielding

Many applications involve simulating the electromagnetic behavior of relatively thin material in voluminous domains. To save computer memory and processing time, the thin materials can be treated differently by resolving them with 3D meshes. Here, the modeling domain is a box filled with air containing an electrode. The sides of the box are insulated while the top has a potential and the ...

Bessel Panel

The Bessel panel is a way to arrange a number of loudspeakers so that the angular sound distribution resembles that of a single speaker. This model combines five Bessel panels in the same pattern to approximate a purely radial sound field. The speakers are driven with different signals, some of them in counter-phase. This results in an approximately homogeneous polar far-field distribution. ...

Absorptive Muffler Designer

Mufflers are used to attenuate noise emitted by a combustion engine, for example, and should typically perform well in a specific frequency range. Attenuation is measured through transmission loss, which gives the damping in dB as a function of frequency. The Absorptive Muffler Designer simulation app is used for studying and designing a simple resonant muffler with a porous lining. With the ...

Equivalent Properties of Periodic Microstructures

Periodic microstructures are frequently found in composite materials, such as carbon fibers and honeycomb structures. They can be represented by a unit cell repeated along three directions of propagation. To reduce computational costs, simulations may replace all of the microscopic details of a composite material with a homogeneous domain with equivalent properties. This app computes the ...

Energy Conservation with Thermoviscous Acoustics

This small tutorial model studies energy conservation in a small conceptual test setup. The model has an inlet and outlet and a Helmholtz resonator with a very narrow neck. The acoustics in the narrow neck are modeled with Thermoviscous Acoustic for a detailed analysis of the thermal and viscous losses. In order to study and verify energy conservation, the model compares the total dissipated ...

Homogenization in a Chemical Reactor

This model illustrates how to simulate a periodic homogenization process in a space dependent chemical reactor model. This homogenization removes concentration gradients in the reactor at a set time interval. The model demonstrates a technique by which you can first stop the time-dependent solver, then restart it with an initial value obtained based on the solution.

Fatigue Response of a Random Non-Proportional Load

A frame with a central cutout is subjected to a random load consisting of 1000 load events. The external load, recorded using three strain gauges, is simulated using superposition of three unit loads. The stress state around the cutout is obtained with the Rainflow cycle counting algorithm. The damage is estimated using the Palmgren-Miner linear damage rule.

Ohmic Losses and Temperature Distribution in a Passive PEM Fuel Cell

In small PEM fuel cell systems (in the sub-100 W range) no active devices for cooling or air transport are normally used. This is due to the desire to minimize parasitic power losses from pumps and fans, and to reduce the system complexity, size, and cost. The reactants at the cathode are therefore transported by passive convection/diffusion. Also the heat dissipation occurs by passive transport ...

Linear Magnetic Gear

In this model, a linear magnetic gear system with a gear ratio of 11:4 is modeled. The liner magnetic gear is assumed to be infinitely long with the modular structure that is repeating on either side. Only a single modular section is modeled by using the customized linear periodic boundary condition. Both the low speed and the high speed armatures (rotors) consist of permanent magnets and back ...

Generation of Random Surfaces

These examples demonstrate how to generate randomized geometric surfaces. The {:comsolmph} software provides a powerful set of built-in functions and operators, such as functions for uniform and Gaussian random distributions and a very useful sum operator. In the blog post associated with these files, "[How to Generate Random Surfaces in COMSOL Multiphysics](/blogs/how-to-generate-random ...