The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Linear Buckling Analysis of a Truss Tower

Trusses are commonly used to create light structures that can support heavy loads. When designing such a structure, it is important to ensure its safety. For a tower made of bars, buckling can cause the structure to collapse. This model shows how to compute the critical buckling load using a linear buckling analysis. The solution is compared with an analytical expression for critical load ...

Small Signal Analysis of a MOSFET

This model shows how to compute the AC characteristics of a MOSFET. Both the output conductance and the transconductance are computed as a function of the drain current.

Time-to-Frequency Fast Fourier Transform of a Coaxial Low-Pass Filter

A very wide band coaxial low-pass filter is designed using a 2D axisymmetric model. To address the wide band frequency response with a fine frequency resolution, the model is built with a transient physics interface first. Then, S-parameters are calculated using a time-to-frequency Fourier transform. To achieve a low-pass frequency response, an air-filled coaxial cable is tuned with five ...

Design Sensitivities in a COMSOL Model

This example exemplifies how to compute the design sensitivities of your COMSOL Multiphysics® model. A more detailed description of the modeling process can be seen in the blog post "[Computing Design Sensitivities in COMSOL Multiphysics](https://www.comsol.com/blogs/computing-design-sensitivities-in-comsol-multiphysics/)".

Polarized Circular Ports

This model of a circular waveguide demonstrates how to use ports with numerical solution of the port modes. It illustrates how to align the polarization of degenerate port modes and in particular how to model and excite the TE11 mode of circular waveguides in 3D.

Acoustics of Coupled Rooms Using the Acoustic Diffusion Equation

This verification model analyzes the acoustics of two coupled rooms using the *Acoustic Diffusion Equation* interface of the Acoustics Module. The results of the model agree with analytical results that are validated against measurements in a reference paper.

Disc Resonator Anchor Losses

This model shows how to compute the anchor loss limited quality factor of a diamond disc resonator. The resonator is anchored to the substrate by a polysilicon post and power is transmitted to the substrate through the post. A perfectly matched layer is used to represent the essentially infinite substrate. The model is based on a paper presented at the 2007 COMSOL conference in Grenoble: P. ...

Stress Relaxation of a Viscoelastic Tube

This model studies the temperature effects on the viscoelastic stress relaxation in a long thick-walled cylinder. In particular, decay of the stresses under the influence of the temperature field during a period of two hours is studied. A four-term generalized Maxwell model represents the material.

Powder Compaction of a Cup

The fabrication of a cup through powder compaction is simulated in this tutorial model. The powder compaction process is becoming common in the manufacturing industry, due to its potential for producing components of complex shape and high strength. Combining the Fleck-Kuhn-McMeeking (FKM) model with the Gurson-Tvergaard-Needleman (GTN) model for porous plasticity makes it possible to cover a ...

Sierpinski Fractal Monopole Antenna

A fractal is a mathematical form showing self-repeating patterns. By virtue of its geometrical properties, a fractal structure can generate multiple resonances in RF applications. This antenna model uses a 3rd order Sierpinski triangle and the calculated S-parameters shows good input matching at the higher order resonances.