The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

Arterial Wall Viscoelasticity

Anisotropic hyperelastic materials are used for modeling collagenous soft tissue in arterial walls. The arterial _wall_ mechanics application describes a section of an artery based on the Holzapfel-Gasser-Ogden hyperelastic material model. In this example the dynamic behavior of the artery is studied, especially the viscoelastic response is calculated by adding a five branches viscoelasticity ...

Stress Relaxation of a Viscoelastic Tube

This model studies the temperature effects on the viscoelastic stress relaxation in a long thick-walled cylinder. In particular, decay of the stresses under the influence of the temperature field during a period of two hours is studied. A four-term generalized Maxwell model represents the material.

Block Verification

This model shows how to set up a uniaxial compression test on a prestressed soil sample. Due to uniaxial compression and simple initial stress values, it is possible to determine the vertical yield stress analytically. The soil sample is modeled with soil plasticity and the Mohr-Coulomb criterion.

Modeling of Wires, Surfaces, and Solids with Boundary-Element-Based Electrostatics

These examples demonstrate using the *Electrostatics, Boundary Elements* interface, introduced in version 5.3 of the COMSOL Multiphysics® software. In the blog post associated with these files, "[How to Create Electrostatics Models with Wires, Surfaces, and Solids](/blogs/how-to-create-electrostatics-models-with-wires-surfaces-and-solids/)", we demonstrate the pros and cons of using the boundary ...

Thermal Bridges in Building Construction - 3D Iron Bar Through Insulation Layer

This model studies the heat conduction in a thermal bridge made up of an iron bar and an insulation layer that separates a hot internal side from a cold external side. The heat flux between internal and external side and the maximum temperature on the external wall are compared them with published values. This example corresponds to the case 4 described in the European standard EN ISO 10211 ...

Biomechanical Model of the Human Body in a Sitting Posture

The dynamic response of a human body in any vibration environment can be predicted using this biomechanical model. In the automobile industry for instance, this model can be used in ride quality simulation and designing vibration isolators such as seats. In this example, a biomechanical model of the human body is developed to evaluate the dynamic response to the vertical vibrations in a ...

Equivalent Properties of Periodic Microstructures

Periodic microstructures are frequently found in composite materials, such as carbon fibers and honeycomb structures. They can be represented by a unit cell repeated along three directions of propagation. To reduce computational costs, simulations may replace all of the microscopic details of a composite material with a homogeneous domain with equivalent properties. This app computes the ...

Design Sensitivities in a COMSOL Model

This example exemplifies how to compute the design sensitivities of your COMSOL Multiphysics® model. A more detailed description of the modeling process can be seen in the blog post "[Computing Design Sensitivities in COMSOL Multiphysics](".

Time-to-Frequency Fast Fourier Transform of a Coaxial Low-Pass Filter

A very wide band coaxial low-pass filter is designed using a 2D axisymmetric model. To address the wide band frequency response with a fine frequency resolution, the model is built with a transient physics interface first. Then, S-parameters are calculated using a time-to-frequency Fourier transform. To achieve a low-pass frequency response, an air-filled coaxial cable is tuned with five ...

Thin Low Permittivity Gap Comparison

The thin low permittivity gap boundary condition is meant to approximate a thin layer of material with low relative permittivity compared to its surroundings. This boundary condition is available for electrostatic field modeling. This example compares the thin low permittivity gap boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.