The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

Electrochemical Impedance Spectroscopy in a Fuel Cell

A fuel cell unit cell is modeled using the full Butler-Volmer expression for the anodic and cathodic charge transfer reactions. The anodic and cathodic overpotentials depend on the local ionic and electronic potentials, which are obtained from the charge balance equations for ionic and electronic current. A small sinusoidal perturbation of the potential around a given cell voltage is applied and ...

Cycle Counting in Fatigue Analysis - Benchmark

A benchmark model of the Rainflow counting algorithm compares results between ASTM and COMSOL fatigue module using a flat tensile test specimen. An extension is made for the cumulative damage calculation following the Palmgren-Miner model and results are compared with analytical expressions.

DC Characteristics of a MESFET

In a MESFET, the gate forms a rectifying junction that controls the opening of the channel by varying the depletion width of the junction. In this model we simulate the response of a n-doped GaAs MESFET to different drain and gate voltages. For a n-doped material the electron concentration is expected to be orders of magnitude larger than the hole concentration. Accordingly, it is possible to ...

1D Lithium-Ion Battery Model for Power vs Energy Evaluation

A battery’s possible energy and power outputs are crucial to consider when deciding in which type of device it can be used. A cell with high rate capability is able to generate a considerable amount of power, that is, it suffers from little polarization (voltage loss) even at high current loads. In contrast, a low rate-capability cell has the opposite behavior. The former type is often denoted ...

Modeling a Biconical Antenna for EMI/EMC Testing

Biconical antennas are popular for very high frequency (VHF) measurement because they support a wide frequency range. They are also useful for electromagnetic compatibility (EMC) testing where the antenna can be used as an RF source in susceptibility or immunity test. This model simulates a biconical antenna made of lightweight hexagonal frames that are preferred over solid cones for ...

Beam Subjected to Traveling Load

As an example of how to build an app using the Application Builder, this application simulates the transient response of a beam, or bridge, that is placed on several equidistant supports and is subjected to a traveling load. The purpose of the Beam Subjected to Traveling Load app is to analyze the structural response of a bridge when vehicles pass over it. Many of the bridge's parameters can be ...

Hexagonal Grating (RF)

A plane wave is incident on a reflecting hexagonal grating. The grating cell consists of a protruding semisphere. The scattering coefficients for the different diffraction orders are calculated for a few different wavelengths.

Current Distribution in a Chlor-Alkali Membrane Cell

The chlor-alkali membrane process is one of the largest in industrial electrolysis with the production of roughly 40 million metric tons of both chlorine and caustic soda per year. Chlorine is used predominantly for the production of vinyl chloride monomer, which in turn is used for the production of poly vinyl chloride (PVC). Current density in membrane-cell technology has increased ...

Applying a Current-Voltage Switch to Models

This example exemplifies how to model the switching between current and voltage excitations in *Terminal* boundary conditions. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Control Current and Voltage Sources with the AC/DC Module](".

Simulation of RF Tissue Ablation

This example exemplifies how to model tissue ablation through applying RF radiation. A more detailed description of the phenomenon, and the modeling process, can be seen in the blog post "[Study Radiofrequency Tissue Ablation Using Simulation](".