The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Optimizing a Flywheel Profile

The radial stress component in an axially symmetric and homogeneous flywheel of constant thickness exhibits a sharp peak near the inner radius. From there, it decreases monotonously until it reaches zero at the flywheel’s outer rim. The uneven stress distribution reveals a design that does not make optimal use of the material available. Given specified flywheel mass and moment of inertia, ...

Computing the Plasma Impedance

This tutorial model demonstrates how to compute the impedance of a capacitively coupled plasma. The _Time Periodic_ study computes the time periodic solution of the plasma. Subsequently, the solution is transformed to the time domain, after which the fast Fourier transform (FFT) solver is called. This allows the plasma impedance to be computed for a given set of input parameters. This impedance ...

Two-Mirror Laser Cavity

In this model, two concave mirrors are placed at a distance and a ray is released from a point inside the cavity. Then the ray is traced for a predefined time period that is sufficiently long. Ray tracing continues until the predefined computation time has passed if the laser cavity is stable while the ray gets out of the cavity relatively sooner if not. A parametric study demonstrates how the ...

Radial Magnetic Coupler in 3D

Radial magnetic coupling between two permanent magnet rotors is modeled using the Rotating Machinery, Magnetic interface. The permanent magnets in the inner and the outer rotors are outward flux-focused and inward flux-focused to maximize the coupling torque.

Semibatch Polymerization

As reactant monomer converts into polymer chains, the density of the reacting mixture often changes notably. In this example you will look at how this effect impacts the total production of polymer in a process. The liquid phase polymerization takes place in a semibatch reactor, where two operating conditions are compared. In the first scenario, the feed of monomer to the reactor is turned off ...

Electrodeposition of a Microconnector Bump in 2D

This model demonstrates the impact of convection and diffusion on the transport-limited electrodeposition of a copper microconnector bump (metal post). Microconnector bumps are used in various types of electronic applications for interconnecting components, for instance liquid crystal displays (LCDs) and driver chips. The location of the bumps on the electrode surface is controlled by the use ...

Rolling Contact Fatigue in a Linear Guide

When a linear guide is loaded above the manufacturer's specification limit, one concern is whether the contact loads will introduce fatigue spalling. In this system analysis, the entire guide has been analyzed and the mostly damaging contact load has been identified to occur on a rail raceway. Since spalling is initiated by a fatigue crack on the subsurface level, a fatigue evaluation based on ...

Mechanics of a Golf Swing

How well you can strike a golf ball is not only determined by your muscle strength, but more importantly it is influenced by the mechanics of golf swing. The outcome of golf stroke is basically determined by the movement of the club head just prior to the impact with the ball. In this example, a multibody analysis of a golf swing is performed. Aim of the analysis is to maximize the club head ...

Simulating a Corrugated Waveguide and Its Impedance

This example exemplifies how to model the impedance of a waveguide of varying cross sectional area. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Computing the Impedance of a Corrugated Waveguide](https://www.comsol.com/blogs/computing-impedance-corrugated-waveguide/)".

In-Plane and Space Truss

Trusses are elements which can only sustain axial forces. You can use trusses to model truss works where the edges are straight as well structures like sagging cables. In the following example you first build and solve a simple 2D truss model using the 2D Truss interface. Later on, you analyze a 3D variant of the same problem using the 3D Truss interface. This model calculates the deformation ...