The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Parabolic Reflector Antenna

A large reflector can be modeled easily with the 2D axisymmetric formulation. In this model, the radius of the reflector is greater than 20 wavelengths and the reflector is illuminated by an axial feed circular horn antenna. The simulated far-field shows a high-gain sharp beam pattern

Dipole Antenna with a Quarter-Wave Coaxial Balun

An antenna balun blocks undesirable currents on the outside of a cable. A quarter-wave coaxial balun (1:1) is one of the easiest designs: it works as a transformer and makes the input impedance from the inner conductor to the outer conductor infinite. This model simulates an antenna prototype including a SMA Receptacle, an ABS enclosure and a quarter-wave coaxial balun. The frequency is tuned to ...

Biconical Antenna

A Biconical antenna is a type of wideband antenna with omni-directional radiation pattern in the H-plane similar to a dipole antenna. A coaxial feed is connected to the radiators using two 90 degree bent arms. The model shows that the biconical antenna works well in applications requiring an omnidirectional radiation pattern and wide bandwidth.

Dielectric Resonator Antenna

A dielectric resonator placed near a radiating element can be used to increase directivity and gain. Here, a block of quartz dielectric, with additional passive metallic antenna elements, is placed above a slot antenna. The fields in and around the antenna are solved for. The far field pattern and impedance is computed and improved performance is seen.

TM Mode Microwave Plasma

This model shows how to simulate a TM mode microwave plasma by using the Doppler broadening parameter to smooth out the resonance zone, which occurs on the contour of critical electron density. A detailed explanation of the underlying physics of this model can be found in the blog entry "Application Note on Microwave Discharges".

Tunable Evanescent Mode Cavity Filter Using a Piezo Actuator

An evanescent mode cavity filter can be realized by adding a structure inside of the cavity. This structure changes the resonant frequency lower than the dominant mode of the unfilled cavity. A piezo actuator is used to control the size of a small air gap which provides the tunability of the resonant frequency.

Signal Integrity (SI) and Time-Domain Reflectometry (TDR) Analysis of Adjacent Microstrip Lines

A signal integrity (SI) analysis gives an overview of the quality of an electrical signal transmitted through electrical circuits, such as high-speed interconnects, cables, and printed circuit boards. The quality of the received signal can be distorted by noise from outside the circuit, and can be degraded by impedance mismatch, insertion loss, and crosstalk. For this reason, EMC/EMI analyses ...

Coupled-Line Bandpass Filter

It is possible to realize a narrowband bandpass filter using cascaded microstrip coupled lines. In this example, a design composed of cascaded microstrip lines, each approximately a half wave length in size at the resonant frequency, is analyzed. The model is solved for the S-parameters and a very narrow bandwidth is observed.

Defining a Mapped Dielectric Distribution of a Metamaterial Lens

This example demonstrates how to set up a spatially varying dielectric distribution, such as might be engineered with a metamaterial. Here, a convex lens shape is defined via a known deformation of a rectangular domain. The dielectric distribution is defined on the undeformed, original rectangular domain and is mapped onto the deformed shape of the lens. Although the lens shape defined here is ...

Sierpinski Fractal Monopole Antenna

A fractal is a mathematical form showing self-repeating patterns. By virtue of its geometrical properties, a fractal structure can generate multiple resonances in RF applications. This antenna model uses a 3rd order Sierpinski triangle and the calculated S-parameters shows good input matching at the higher order resonances.