# Application Gallery

The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.

### Slope Stability with Pore Water Pressure in a Dam Embankment

A slope stability analysis is performed and the Factor of safety of the dam embankment is calculated by using the Shear Strength Reduction Technique. The pore water pressure is described with Darcy’s law and the Mohr-Coulomb constitutive model is used to describe the soil behavior. At first, a 2D model (plane strain) is investigated followed by a extruded 3D model. The 2D model and the 3D model ...

### Modeling Stress Dependent Elasticity

This example shows how to implement a stress dependent material model. The Young's modulus changes based on the stress value.

### Peristaltic Pump

In a peristaltic pump, rotating rollers squeeze a flexible tube. As the rollers move along the tube, the fluid in the tube follows the motion. The main advantage of the peristaltic pump is that no seals, valves or other internal parts ever touch the fluid. Due to their cleanliness, peristaltic pumps have found many applications in the pharmaceutical, chemical, biomedical and food industries. ...

### Single Edge Crack

This model deals with the stability of a plate with an edge crack that is subjected to a tensile load. To analyze the stability of exciting cracks, fracture mechanics can be utilized. A commonly used parameter in fracture mechanics, used to predict if a specific crack will cause the plate to fracture, is the so-called stress intensity factor KI. When this calculated value becomes equal to ...

### Eigenfrequency Analysis of a Free Cylinder

This model calculates the eigenfrequencies and mode shapes of an unconstrained cylinder in axisymmetry. The model is taken from NAFEMS Free Vibration Benchmarks. The eigenfrequencies are compared with the values given in the benchmark report.

### Pratt Truss Bridge

This model is inspired by a classic bridge type called a Pratt truss bridge. You can identify a Pratt truss by its diagonal members, which (except for the very end ones) all slant down and in toward the center of the span. All the diagonal members are subject to tension forces only, while the shorter vertical members handle the compressive forces. Since the tension removes the buckling risk, ...

### Generation of Random Surfaces

These examples demonstrate how to generate randomized geometric surfaces. The COMSOL Multiphysics® software provides a powerful set of built-in functions and operators, such as functions for uniform and Gaussian random distributions and a very useful sum operator. In the blog post associated with these files, "[How to Generate Random Surfaces in COMSOL Multiphysics](/blogs/how-to-generate ...

### Connecting Shells and Beams

Many engineering structures consist of thin and slender components, where a full solid model will result in extremely many small elements. For such structures, it is much more efficient to use shell or beam elements. In this tutorial and verification model, it is shown how to connect beam and shell elements in different situations. The results are also compared to a solid model of the same ...

### Connecting Shells and Solids

This tutorial model shows how to model a structure using both shells and solids, and how to create the transition between the two modeling domains. Results are compared between the shell solution and the full 3D solution, and the effects of the transition are highlighted.

### Fluid-Structure Interaction in Aluminum Extrusion

In massive forming processes like rolling or extrusion, metal alloys are deformed in a hot solid state with material flowing under ideally plastic conditions. Such processes can be simulated effectively using computational fluid dynamics, where the material is considered as a fluid with a very high viscosity that depends on velocity and temperature. Internal friction of the moving material acts ...

21–30 of 78