Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Multiphysics Approach to Fundamental Conjugate Drying by Forced Convection

M. de Bonis, and G. Ruocco
DITEC, Universitµa degli studi della Basilicata, Campus Macchia Romana, Potenza, Italy

Heat and mass transfer involved in drying is studied by using COMSOL 3.4. The effect of air temperature on the performance of the drying process applied to fresh food slices is scrutinized. COMSOL’s flexible formulation is exploited by using special drying kinetics for the substrate, and by including a treatment of the dependence of the properties upon the residual moisture content. The model ...

Numerical Modelling of Electrophoresis Applied to Restoration of Archaeological Organic Materials

J. Caire[1], A. Bouh[1], and E. Guilminot[2]
[1]LEPMI, UMR 5631, INPG - CNRS, Saint Martin d’Hères, France
[2]EPCC, Arc'Antique, Nantes, France

Restoration of archaeological materials from oceans is a major activity of Arc’ Antique. Organic materials such as wood, tissues, leathers, papers and ceramics found in sea water are always impregnated with salts. Rinsing such archaeological objects with pure water to extract the salts takes too long, so electrophoresis was used to improve the salt extraction. The objective of this ...

Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

C. Del Vecchio[1], R. Biasi[2] , D. Gallieni[3], and A. Riccardi[1]

[1]INAF-OAA, Fierenze, Italy
[2]Microgate Srl, Bolzano, Italy
[3]ADS International Srl, Valmadrera, Italy

The actuation system of the deformable mirror is one of the crucial components of an Adaptive Optics unit. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Choosing a magnetic circuit that makes optimum use of the magnetic force delivered by a current and properly arranging the electrostatic geometry allows to obtain very ...

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

J. Perko[1], D. Mallants[1], E. Vermariën[2], and W. Cool[2]
[1]Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
[2]Belgian Agency for Radioactive Waste and Enriched Fissile Material (ONDRAF/NIRAS), Mol, Belgium

Mass transport modelling through porous media is typically characterized by complex physics and geometry. In the particular case of radionuclide transport, modelling for radioactive waste repositories, an additional level of complexity, and thus uncertainty, originates from the long time frames involved. Performing a safety analysis of a radioactive waste disposal system requires therefore ...

Comparison between COMSOL and RFSP-IST for a 2-D Benchmark Problem

G. Gomes
Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

RFSP-IST (Reactor Fueling Simulation Program) is a computer code used for the full-core neutronics design and analysis of CANDU® reactors. RFSP-IST calculates the static flux and power distributions in the core by solving the neutron diffusion equation in two energy groups. For validation purposes, results from RFSP-IST are often compared with those from other codes. This paper documents the ...

Effect of Local Deformation on the Emission Energy of  Quantum Dots in a Flexible Tube

S. Kiravittaya[1], P. Cendula[2], A. Rastelli[2], and O. Schmidt[2]
[1]Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
[2]Institute for Integrative Nanosciences, Dresden, Germany

Strain induced by local deformation of a flexible micrometer-sized semiconductor tube is quantified by modeling a ball pressing on the tube wall. By changing the pressing condition, we are able to change the strain state of the tube wall incorporating self-assembled quantum dots (QDs) in the wall. The QD emission energy is calculated in COMSOL® by solving the Schrödinger wave equation ...

Magnetic Ratchet

A. Auge, F. Wittbracht, A. Weddemann, and A. Hütten
Department of Physics, University of Bielefeld, Germany

Transport phenomena in spatially periodic magnetic systems, in particular the directed transport of magnetic beads in a so called magnetic ratchet (Brownian motor) are considered. Simulations are carried out to test and optimize this system, where the Smoluchowski equation with flux terms for the magnetic and gravitational force is used. Furthermore, experiments are carried out to verify the ...

Benchmarking as Key Element of Confidence Building in Safety Assessments for Radioactive Waste Disposal

E. Weetjens
SCK-CEN (the Belgian Nuclear Research Centre), Mol, Belgium

Verification of the codes applied for assessment of the long-term repository safety is typically one of the quality assurance requirements demanded by regulatory bodies, in the disposal of radioactive waste. In this paper, an internationally organized benchmark exercise is presented, in which the comparison was carried out for a selection of key radionuclides. The examples presented in this ...

Investigation of Natural Convective Air Flow Field through Comb Channels

R. Umhack, M. Rainer, M. Tamerle, and G. Hillmer
Process-, Environmental- and Bio- technology, MCI - University of Applied Sciences, Innsbruck, Austria

A new type of radiator with a package of combs, to gain a larger area for heat exchange, instead of trapezoidal convector plates, is investigated. The main aim is to find the optimal comb diameter. To solve this problem, CFD (computational fluid dynamics) with COMSOL Multiphysics is used. A chart showing radiator power was produced, which includes radiator power for different temperatures and ...

Transient Conjugate Optical-thermal Fields in Thin Films Irradiated by Moving Sources: A Comparison between Back and Front Treatment

N. Bianco[1], O. Manca[2], and D. Ricci[2]
[1]Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Aversa (CE), Italy

A two dimensional instationary analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure on a glass substrate by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. COMSOL Multiphysics 3.4 code has been adopted to solve the combined thermal and electromagnetic problem in order to compare the ...