Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics Simulations of Microfluidic Systems for Biomedical Applications

M. Dimaki, J. Moresco Lange, P. Vazquez, P. Shah, F. Okkels, and W. Svendsen
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark

The need for fast, easy and cost-effective analysis of blood samples as well as our understanding of the functionality of cells and neurons are two rather pressing issues in the modern world. Both of these can be addressed by functional lab-on-a-chip systems, which have been designed and optimized for specific analyses. This paper deals with the design of several different systems for cell ...

Design of a High Field Gradient Electromagnet for Magnetic Drug Delivery to a Mouse Brain

I. Hoke, C. Dahmani, T. Weyh

Heinz-Nixdorf Lehrstuhl für Medizinische Elektronik, Fakultät für Elektro-und Informationstechnik, Technische Universität München, Germany

The application of nanoparticles coupled with medical agents to brain tumors remains one of the biggest obstacles in neuro scientific research. This work explores an optimal design of an electromagnet to overcome the blood-brain barrier by means of an intensive external magnetic field gradient. It is found that the field gradients depend strongly on the design of the magnet tip. The model ...

Magneto-Hydrodynamic Numerical Study of DC Electromagnetic Pump for Liquid Metal

A. Daoud, and N. Kandev
Institut de recherche d'Hydro-Quebec (LTE), Shawinigan, Quebec, Canada

The electromagnetic pumping (EMP) of electrically-conducting fluid is of growing interest for many industrial applications requiring precise flow control, enabling stopping or reversing flow direction without any moving parts or mechanical devices. Presented in this work are the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of direct current (DC) EMP for liquid ...

Design and Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics

R. Wislati , H. Haase
Leibniz Universität Hannover, Germany

In this paper an electromagnetic solenoid actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) Systems for Internal Combustion Engines. In opposition to common approaches the underlying EMVA make use of a permanent magnet in the upper electromagnet. The analysis ...

Analyzing Muffler Performance Using the Transfer Matrix Method 

K. Andersen
Dinex Emission Technology A/S, Middelfart, Denmark

Exhaust noise must meet legislation targets, customer expectations and cost reduction which call for design optimization of the exhaust systems in the design phase. One solution is to use 3 dimensional linear pressure acoustics and calculate the transfer matrix of the muffler. The transfer matrix is the basis for calculating either the insertion loss or transmission loss of a muffler. The 3D ...

Finite Element Analysis of Ferrofluid Cooling of Heat Generating Devices

T. Strek
Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland

An external magnetic field imposed on a ferrofluid with a temperature gradient, results in a non-uniform magnetic body force, which leads to a form of heat transfer called thermomagnetic convection. A magnet placed near the device will always attract the colder ferrofluid more than warmer. Viscous, two-dimensional, laminar and incompressible ferromagnetic fluid flow, under the influence of a ...

Simulation of Production Processes using the Multiphysics Approach: The Electrochemical Machining Process

R. van Tijum
Advanced Technology Center, Philips Consumer Lifestyle, Drachten, The Netherlands

Redmer van Tijum studied Applied Physics at the University of Groningen. In 2006, he received his PhD title on ‘Interface and surface roughness of polymer metal laminates’ in the field of Material Science at the University of Groningen. After that he became research and development engineer at Philips, where he focussed his attention on the improvement of production processes mainly ...

Simulating Hodgkin-Huxley-like Excitation using Comsol Multiphysics

J. Martinek[1,2], Stickler[2] , Reichel[1], and Rattay[2]
[1]Department of Biomedical Engineering and Environmental Management, University of Applied Sciences Technikum Wien, Vienna, Austria
[2]Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria

Most simulations concerning electrical activation of human muscles are based on the modeling approach of Hodgkin and Huxley. Calculating the response of a muscle or nerve fiber membrane to an applied electrical field, needs to consider the “macroscopic”, extracellular potential distribution in the tissue surrounding the fiber, and the “microscopic”, intracellular ...

Numerical Solutions for the Lévêque Problem of Boundary Layer  Mass or Heat Flux

E. Holzbecher
Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany

The Lévêque problem is an idealized simple situation concerning the influence of the boundary on the distribution of temperature or mass in Hagen-Poiseuille flow. Here, the performance of numerical solutions is examined for a range of Péclet numbers, spanning 11 orders of magnitude. We examine the Sherwood, resp. Nusselt numbers and confirm the cubic square rule for high flow ...

Modeling the Process of Drying Stationary Objects inside a Tumble Dryer Using COMSOL Multiphysics

T. Zeineldin
Department of Automatic Control and Mechatronics, University of Paderborn, Paderborn, Germany

Temperature and residual moisture content of a stationary Textile in a home tumble dryer are simulated in a 2D model with COMSOL Multiphysics. Moisture migration to the textile surface is modeled in the form of capillary flow and vapor diffusion along with heat transfer in the form of conduction and energy lost due to phase change (evaporation). The drying air energy, mass and momentum transport ...