Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Helium Two-Phase Flow in a Thermosiphon Open Loop

Bertrand Baudouy
Head of the Cryogenics R&D Group, CEA Saclay, France

Outline of presentation: Missions of SACM (Accelerator, Cryogenics and Magnetism Division) Context : The Large Hadron collider at CERN, Geneva Cooling large superconducting magnet Thermosiphon open loops for cooling superconducting magnets Experimental facility and ranges of the study COMSOL Multiphysics Modeling Results with COMSOL Multiphysics Comparison with experimental ...

COMSOL Multiphysics® Version 4

Svante Littmarck
President and CEO, COMSOL

Svante Littmarck is the CEO of the COMSOL group. He co-founded COMSOL in 1986. He holds a M.Sc. in Applied Mathematics from the Royal Institute of Technology in Stockholm. In 2004 he received an honorary doctoral degree from the Royal Institute of Technology.

A Multi-Physics Framework for the Geometric Optimization of a Diaphragm Electrostatic Micropump

E. Bertarelli[1], R. Ardito[1], E. Bianchi[1], K. Laganà[1], A. Corigliano[1], G. Dubini[1], and R. Contro[1]

[1]Department of Structural Engineering, Politecnico di Milano, Milano, Italy

In this work, an electrostatic diaphragm micropump is investigated by means of COMSOL Multiphysics®. A fluid-dynamic model is adopted to evaluate the fluid flow characteristics inside the pumping chamber, in static conditions. In parallel, electromechanical quasi-static simulations are performed to evaluate the occurrence of membrane movement and pull-in phenomena. Finally, a simplified ...

Simulating the Influence of the Nozzle Diameter on the Shape of Micro Geometries Generated with Jet Electrochemical Machining

A. Schubert[1][2], M. Hackert[1], and G. Meichsner[2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure for micromachining. Based on localized anodic dissolution three-dimensional geometries and microstructured surfaces can be manufactured using Jet-ECM. COMSOL Multiphysics is used at Chemnitz UT to simulate the electric current density in the jet and the dissolution process. A mesh displacement dependent on the normal current ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Towards a Model for Simulating Driving Rain on an Inclined Roof during Wind Gusts and Heavy Rain Intensity

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

The roof of a well known shopping place in Amsterdam collapsed during a storm with heavy rain showers in 2002. One of the main problems was the malfunction of the draining system. Another problem was that driving rain water apparently washed over edges that where designed to hold the water. This short paper presents the progress of using COMSOL to simulate the height of the water near the edges ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

Modeling Contaminant Diffusion in Highly Complex Rock Structures

N. Diaz[1], A. Jakob[1], L. Van Loon[1], and D. Grolimund[2]
[1]Paul Sherrer Institut NES/LES, Villigen PSI, Switzerland
[2]Paul Sherrer Institut NES/SLS, Villigen PSI, Switzerland

Opalinus clay is currently being proposed as a potential host rock for radioactive waste repository in deep geological formation. It is then important for performance assessments to understand the transport properties of such rocks. Clay materials are characterized by low hydraulic conductivities and diffusion is assumed to be the main transport mechanism. The studied rock is a complex assembly ...

Modeling with COMSOL the Interaction Between Subducting Plates and Mantle Flow

J. Rodríguez-González[1], A.M. Negredo[1], P. Petricca[2], and E. Carminati[2][3]


[1]Departamento de Geofísica y Meteorología, Facultad de CC. Físicas, Universidad Complutense de Madrid, Madrid, Spain
[2]Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Roma, Italy
[3]Istituto Geologia Ambientale e Geoingegneria – CNR, Roma, Italy

Subduction processes have great importance as are related to volcanism and earthquake occurrence. Old and cold plates should subduct steeper than younger ones, but the subduction angle is highly variable and does not always correlate with the age of the plates. Some researchers propose a global or net westward drift of the lithosphere relative to the mantle and this assessment is still a matter ...