Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Multi-Physics Framework for the Geometric Optimization of a Diaphragm Electrostatic Micropump

E. Bertarelli[1], R. Ardito[1], E. Bianchi[1], K. Laganà[1], A. Corigliano[1], G. Dubini[1], and R. Contro[1]

[1]Department of Structural Engineering, Politecnico di Milano, Milano, Italy

In this work, an electrostatic diaphragm micropump is investigated by means of COMSOL Multiphysics®. A fluid-dynamic model is adopted to evaluate the fluid flow characteristics inside the pumping chamber, in static conditions. In parallel, electromechanical quasi-static simulations are performed to evaluate the occurrence of membrane movement and pull-in phenomena. Finally, a simplified ...

The Use of Multiphysics Modeling in the Steel Industry

Filip Van den Abeele
Simulation Expert, OCAS, Belgium

OCAS is a joint venture between ArcelorMittal and the Flemish Region. She uses COMSOL Multiphysics for the following: Enamel solidification Magnetic Pulse Forming Electromagnetic modelling of electric machines Vortex Induced Vibrations Model Identification for Orthotropic Materials and much more ---------------------------------- Keynote speaker's biography:Filip Van den Abeele has a ...

An All-Purpose Full-Vectorial Finite Element Model for Arbitrarily Shaped Crossed-Gratings

G. Demésy[1], F. Zolla[1], A. Nicolet[1], and M. Commandré[1]
[1]Institut Fresnel, Université Aix-Marseille III, École Centrale de Marseille, France

We demonstrate the accuracy of the Finite Element Method (FEM) to characterize an arbitrarily shaped crossed-grating in a multilayered stack illuminated by an arbitrarily polarized plane wave under oblique incidence. To our knowledge, this is the first time that 3D diffraction efficiencies are calculated using the FEM. The method has been validated using classical cases found in the literature. ...

A Novel FEM Method for Predicting Thermoacoustic Combustion Instability

G. Campa[1] and S.M. Camporeale[1]
[1]DIMEG, Politecnico di Bari, Bari, Italy

Modern gas turbines suffer of the phenomenon of combustion instability, also known as “humming”. The main origin of the instability is considered to be related to the interaction between acoustic waves and fluctuations of the heat released by the flame. This paper presents a novel numerical method in which the governing equations of the acoustic waves are coupled with a flame heat ...

Towards a Model for Simulating Driving Rain on an Inclined Roof during Wind Gusts and Heavy Rain Intensity

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

The roof of a well known shopping place in Amsterdam collapsed during a storm with heavy rain showers in 2002. One of the main problems was the malfunction of the draining system. Another problem was that driving rain water apparently washed over edges that where designed to hold the water. This short paper presents the progress of using COMSOL to simulate the height of the water near the edges ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Modeling Contaminant Diffusion in Highly Complex Rock Structures

N. Diaz[1], A. Jakob[1], L. Van Loon[1], and D. Grolimund[2]
[1]Paul Sherrer Institut NES/LES, Villigen PSI, Switzerland
[2]Paul Sherrer Institut NES/SLS, Villigen PSI, Switzerland

Opalinus clay is currently being proposed as a potential host rock for radioactive waste repository in deep geological formation. It is then important for performance assessments to understand the transport properties of such rocks. Clay materials are characterized by low hydraulic conductivities and diffusion is assumed to be the main transport mechanism. The studied rock is a complex assembly ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

Modeling the Behavior of Phased Arrays in Brain Tissue: Application to Deep Brain Stimulation

V. Valente[1], A. Demosthenous[1], and R. Bayford[2]

[1]Department of Electronic & Electrical Engineering, University College London, London, United Kingdom
[2]Department of Natural Sciences, Middlesex University, London, United Kingdom

Deep Brain Stimulation (DBS) is a therapeutic tool used for a number of neurological disorders including chronic pain, incontinence and movement disorders, such as Parkinson’s disease. DBS consists of the low-frequency stimulation of an area of the brain, known as basal ganglia. The stimulation is provided by clinical implant, consisting of a pulse generator and an electrode lead ...