Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Assessment of COMSOL Capabilities to Analyse the Thermo- Hydrodynamic Behaviour of the MSR Core

A. Cammi[1], V. Di Marcello[1], C. Fiorina[1], and L. Luzzi[1]

[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The present work is aimed at evaluating the capabilities of COMSOL Multiphysics® to treat heat transfer in Molten Salt Reactors (MSR). The analyzed situation is represented by the molten salt in turbulent regime flowing through a cylindrical channel surrounded by graphite, with both the fluid and the solid generating power. A suitable validation framework has been set up on the basis of an ...

Inverse Analysis for Heat Transfer Coefficient Identification

F. Tondini[1], P. Bosetti[1], and S. Bruschi[1]

[1]DIMS, University of Trento, Trento, Italy

The hot stamping of boron steels for producing complex structural components of the car body-in-white is more and more widespread. Optimization of sheet forming technologies at elevated temperatures is still troublesome, since the thermal, mechanical and metallurgical phenomena interacting during hot stamping force to feed the numerical model of the process by a huge amount of data, most of ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

Passive and Active Deformation Processes of 3D Fibre-Reinforced Caricatures of Cardiovascular Tissues

A. Di Carlo[1], P. Nardinocchi[2], T. Svaton[3], and L. Teresi[1]

[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Dept. of Structural & Geotechnical Engineering, Università di Roma La Sapienza, Roma, Italy
[3]Dept. of Mathematics, University of West Bohemia, Pilsen, Czech Republic

In this paper, we present a mathematical model of contractile elastic solids meant to simulate various districts of the cardiovascular system, and based on the concepts of active deformation and embedded muscle fibres. Specifically, here we deal with the modeling of the gross mechanics of the Left Ventricle (LV) which is strictly related to its pump function. As is well known, the effectiveness ...

Towards a Model for Simulating Driving Rain on an Inclined Roof during Wind Gusts and Heavy Rain Intensity

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

The roof of a well known shopping place in Amsterdam collapsed during a storm with heavy rain showers in 2002. One of the main problems was the malfunction of the draining system. Another problem was that driving rain water apparently washed over edges that where designed to hold the water. This short paper presents the progress of using COMSOL to simulate the height of the water near the edges ...

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and dispersion. This article focuses on Lauwerier’s problem. As an extension, it is suggested that beside ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Mobility of Catalytic Self-Propelled Nanorods Modeling with COMSOL Multiphysics®

F. Lugli[1] and F. Zerbetto[1]
[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

A small particle or a nano-sized object placed in a liquid is subject to random collisions with solvent molecules. The resulting erratic movement of the object is known as Brownian motion, which, in nature, cannot be used to any practical advantage both in natural systems (such as biomolecular motors) or by artificial devices. If energy is supplied by external source or by chemical reactions, ...

Two-Dimensional Modelling of a Non-Isothermal PrOx Reactor with Water Cooling for Fuel Cell Applications

H. Beyer[1], B. Schönbrod[1], C. Siegel[1], M. Steffen[1], and A. Heinzel[1][2]
[1]Zentrum für BrennstoffzellenTechnik GmbH, Duisburg, Germany
[2]Institut für Energie und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

This work treats of a preferential oxidation reactor, which is simulated by a two-dimensional axial symmetric model. The reactor serves as purification of hydrocarbon reformat and converts the CO mole fraction from up to 1 % in the feed gas down to a few ppm at the outlet to deliver a hydrogen rich feed gas for a PEM fuel cell. The model combined chemical kinetic expressions, which were ...

Modeling the Behavior of Phased Arrays in Brain Tissue: Application to Deep Brain Stimulation

V. Valente[1], A. Demosthenous[1], and R. Bayford[2]

[1]Department of Electronic & Electrical Engineering, University College London, London, United Kingdom
[2]Department of Natural Sciences, Middlesex University, London, United Kingdom

Deep Brain Stimulation (DBS) is a therapeutic tool used for a number of neurological disorders including chronic pain, incontinence and movement disorders, such as Parkinson’s disease. DBS consists of the low-frequency stimulation of an area of the brain, known as basal ganglia. The stimulation is provided by clinical implant, consisting of a pulse generator and an electrode lead ...