Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Assessment of COMSOL Capabilities to Analyse the Thermo- Hydrodynamic Behaviour of the MSR Core

A. Cammi[1], V. Di Marcello[1], C. Fiorina[1], and L. Luzzi[1]

[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The present work is aimed at evaluating the capabilities of COMSOL Multiphysics® to treat heat transfer in Molten Salt Reactors (MSR). The analyzed situation is represented by the molten salt in turbulent regime flowing through a cylindrical channel surrounded by graphite, with both the fluid and the solid generating power. A suitable validation framework has been set up on the basis of an ...

Optimization of Dynamic Embedded, Water Based Surface Heat (and Cold) Emitting System for Buildings

S. Thomas[1], P.Y. Franck[1], and P. André[1]
[1]Department of Sciences and Environmental Management, University of Liège, Arlon, Belgium

This paper presents the heat flow model and the experimental test bench developed to optimize a new kind of heating floor. In the first part of the text is described the new kind of high reactivity emitting device for building heating and cooling. The second part illustrates the numerical model developed to evaluate the device efficiency. Finally experimental test bench implementation and ...

Including Expert Knowledge in Finite Element Models by Means of Fuzzy Based Parameter Estimation

O. Krol[1], N. Weiss[1], F. Sawo[1], and T. Bernard[1]

[1]Fraunhofer Institute for Information and Data Processing, Karlsruhe, Germany

In this paper we present a novel approach for modeling spatial distributed bio- chemical and environmental processes like the growth of plants and the related biochemical reactions. The physical phenomena like flow and mass transport can be described by fluid dynamics equations, but for effects like growth rates often no analytic models are available. However, in many cases experts have ...

The Use of Multiphysics Modeling in the Steel Industry

Filip Van den Abeele
Simulation Expert, OCAS, Belgium

OCAS is a joint venture between ArcelorMittal and the Flemish Region. She uses COMSOL Multiphysics for the following: Enamel solidification Magnetic Pulse Forming Electromagnetic modelling of electric machines Vortex Induced Vibrations Model Identification for Orthotropic Materials and much more ---------------------------------- Keynote speaker's biography:Filip Van den Abeele has a ...

Application of System Identification Methods to Implement COMSOL Models into External Simulation Environments

A.W.M. van Schijndel[1] and M. Gontikaki[1]

[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Full coupling of distributed parameter models, like COMSOL, with the lumped models often lead to very time-consuming simulation duration times. In order to improve the speed of the simulations, the idea of using system identification methods to implement the distributed parameters models of COMSOL into external simulation environments, is explored. It is concluded that the system identification ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Elastoplastic Models of the Interaction between Active Fronts of the Southern Alps and Dinarides (NE Italy and NW Slovenia)

M. Coccia[1], E. Carminati[1], F. Rolandone[2], M. Battaglia[1], D. Zuliani[3], and P. Fabris[3]
[1]Università La Sapienza, Roma, Italy
[2]Université Pierre et Marie Curie, Paris, France
[3]Centro Ricerche Sismologiche, Udine, Italy

We use GPS measurements and Finite Element analysis to investigate strain accumulation in the interaction between active fronts of the Southern Alps and Dinarides at the northern edge of the Adriatic micro-plate. We develop a three dimensional model of the area taking into account the regional topography, approximating the crust as an elasto-plastic medium and reproducing as close as possible ...

Towards a Model for Simulating Driving Rain on an Inclined Roof during Wind Gusts and Heavy Rain Intensity

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

The roof of a well known shopping place in Amsterdam collapsed during a storm with heavy rain showers in 2002. One of the main problems was the malfunction of the draining system. Another problem was that driving rain water apparently washed over edges that where designed to hold the water. This short paper presents the progress of using COMSOL to simulate the height of the water near the edges ...

Gravity-Driven Film Flow: Design of Bottom Topography

C. Heining[1] and N. Aksel[1]

[1]Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany

We study the gravity-driven film flow of a Newtonian liquid down an inclined plane. Many applications such as heat- and mass exchangers and evaporators or film coaters require undulated or rippled bottom topographies. In these cases, the interplay of gravity, surface tension and inertia leads to a response of the interface which furthermore strongly depends on the shape of the bottom topography. ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...