Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Modeling of Usage of Air Injection Well in a Geothermal System

X. Ma[1] and J. Grabe[1]

[1]Institude for Geotechnics and Construction Management, Hamburg University of Technology, Hamburg, Germany

Natural groundwater flow can increase the efficiency of geothermal system. But groundwater flow is not available everywhere. A patented new idea is to use air injection well to create artificial flow in sandy or gritty soils. The governing equations of fluid flow and heat transfer problem were solved with the COMSOL’s Earth Science Module.

Temperature Distribution in High Voltage Dummy Cable

G.Y. Sun[1], O. Sekula[1], and C. Albanbauer[1]
[1]Brugg Kabel AG, Brugg, Switzerland

A 2D model of coupled electricthermal application is used to calculate the temperature distribution in a high voltage dummy cable laid in free air, where no high voltage is applied. Resistive loss heats the cable while the surrounding air cools it down. The steady-state condition is reached when heat balances. The steady-state temperature depends not only on the resistive loss but also on the ...

Calculating Power Loss of Contactless Power Transmission Systems with Ferrite Components

S. Hanf[1] and D. Kürschner[1]
[1]Institut für Automation und Kommunikation Magdeburg, Magdeburg, Germany

In this paper a methodology for calculating loss within contactless inductive power transmission systems, resulting from hysteresis and eddy current effects, is presented. The usage of the mathematical models of Stoll and Steinmetz for the determination of core loss with COMSOL is explained. Apart from the metrological verification of selected aspects of power loss, the results of a parametrical ...

Simulation of Daisy Chain Flip-Chip Interconnections

G.S. Durante[1] and M. Fretz[1]

[1]CSEM Zentralschweiz, Alpnach Dorf, Switzerland

Flip-chip interconnection technologies have been tested through the use of a test chip with embedded single-bump daisy chains. The Flip-Chip technologies are selected among Au bump Thermocompression (TC) with and without Nonconductive Adhesives (NCA) underfiller, anisotropic conductive adhesive (ACA) bonding, and AuSn20 eutectic solder. The single bumps were then measured with a high precision ...

Numerical Modeling of Resistance Welding Process in Joining of Thermoplastic Composite Materials Using COMSOL Multiphysics®

R. Carbone[1] and A. Langella[1]
[1]Material and Production Engineering Department, Università degli Studi di Napoli Federico II, Napoli, Italy

This paper deals of a technology involved in the joining of thermoplastic composites, the resistance welding technology. This process takes advantage in the repeatable melting process for the thermoplastic resins. The process was numerically modeled to study the effect of the two main process parameters, the electric power density applied to the heating elements and the exposure time at the ...

Chip Drop After Silver Sintering Process

M.H. Poech[1], M. Weiß[1], and K. Gruber[1]

[1]Fraunhofer Institute for Silicon Technology, Itzehoe, Germany

Since a couple of years, sintering becomes more and more important for power electronics. To press a semiconductor under high temperature in silver paste on a substrate promises benefits for durability. Tests with semiconductors of different thickness expose some problems. After the cool down, some of them fall slightly from the substrate. Stress in the boundary layer, caused by different ...

The Full-System Approach for Elastohydrodynamic Lubrication

N. Fillot[1], T. Doki-Thonon[1], and W. Habchi[2]
[1]CNRS, INSA, Université de Lyon, Lyon, France
[2]Department of Industrial and Mechanical Engineering, Lebanese American University, Byblos, Lebanon

A ball is in contact with a plane, and a lubricant separates the two surfaces to decrease friction during their relative motion. To avoid wear, the lubricant film thickness should be higher than the surface roughness. The goal of this paper is to show how it is possible to solve efficiently the problem of elastohydrodynamics lubrication with COMSOL Multiphysics®, using a PDE (Partial ...

Modelling of the Hydrogen Diffusion in Martensitic Steel in Contact with H2SO4 Media

J. Bouhattate[1], X. Feaugas[1], and S. Frappart[1][2]
[1]Laboratoire d’Etudes des Matériaux en Milieux Agressifs,
Université de La Rochelle, La Rochelle, France
[2]V&M France, CEV, Aulnoye-Aymeries, France

Hydrogen Embrittlement (HE) is one of the mechanisms responsible for premature failure of structures. In the context of environmental sustainability, it is compelling to improve or conceive new processes and/or new materials capable of reducing fracture induced by HE. We analyzed the influence of the oxide layer on the permeability of hydrogen. This investigation was carried on as a correlative ...

Handling Tessellated Free Shape Objects with a Morphing Mesh Procedure in COMSOL Multiphysics®

P. Franciosa[1] and S. Gerbino[2]
[1]Faculty of Engineering, University of Naples Federico II, Napoli, Italy
[2]Faculty of Engineering, University of Molise, Campobasso, Italy

Tessellated models are more and more used in several engineering fields. The need to use such models to quickly perform computer simulations related to coupled physical phenomena, implies the use of dedicated software, allowing to solve, into an integrated environment, multiphysics problems. In the present work, COMSOL Multiphysics® has been used and its ability to handle tessellated models ...

Thermal and Electrostatic Analyses of One Dimensional CFC Diagnostic Calorimeter for SPIDER Beam Characterisation

M. De Muri[1][2], M. Dalla Palma[1], P. Veltri[1], A. Rizzolo[1], N. Pomaro[1], and G. Serianni[1]
[1]Consorzio RFX, Euratom-ENEA Association, Padova, Italy
[2]Dipartimento di Ingegneria Elettrica, Padova University, Padova, Italy

The main purpose of SPIDER (Source for the Production of Ions of Deuterium Extracted from RF plasma) test facility is the investigation and optimization of a negative ion beam produced by the full size ion source for ITER NBIs (Neutral Beam Injectors). Thermal, transient, non-linear FE (Finite Element) analyses and also electrostatic analysis have been performed as a feasibility study, to ...