Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimized Design of Shielded Microstrip Lines using Adaptive Finite Element Method

P. Kakria[1], A. Marwaha[1], and M. S. Manna[2]
[1]Electronics & Communication department, SLIET Longowal, Distt. Sangrur, Punjab, India.
[2]Electrical & Instrumentation department, SLIET Longowal, Distt. Sangrur, Punjab, India.

In this paper, the attempt has been made to design and analyze single strip shielded Microstrip line with capacitive coupling. The main objective is to compute the capacitance per unit length of shielded Microstrip line using Finite Element technique. The computational and simulation work has been carried out with the help of FEM based COMSOL Multiphysics software. The shielded Microstrip ...

Heat Generation from Dielectric Loss, Internal Heat Generation and Vibration in COMSOL4.2 Multiphysics

T. R. Jeba, B. Vins, and V. Ramamoorthy
HCL Technologies

This paper presents a FEA approach to estimate temperature rise and thermal stress experienced in PZT/Solid structure due to internal heat generation and dynamic excitation. The power dissipative density consumed by structural damping of the mass structure, internal heat generation due to applied voltage and dielectric loss of the PZT material is first determined. The dissipative power is then ...

Modeling of Articular Cartilage Growth Using COMSOL

K. Manda, and A. Eriksson
KTH Mechanics
Royal Institute of Technology
100 44 Stockholm, Sweden

Articular cartilage is an avascular connective soft tissue in the diarthrodial joints and functions in a highly demanding mechanical environment. The degeneration or wear of the cartilage is a huge problem that effects millions of people every year. The long term objective of the present work is to develop an analytical articular cartilage growth model. A simplified 2D axisymmetric ...

Simulation of Fast Response Thermocouple for the Nuclear Reactor Core

K. Dusarlapudi[1], B. K. Nashine[2], D. Bai[3], and C. S. Babu[1]
[1]KL University, Vaddeswaram, Guntur, Andhra Pradesh, India
[2]E.D&S.S, IGCAR Kalpakkam, India
[3]VIT, Vellore, India

Thermocouples have been used for measurement of temperature ever since the discovery of Seebeck effect. Though the voltage output of a thermocouple is a function of the temperature difference between hot and cold junctions, the response time and the magnitude of voltage depends on the geometry and material of the thermocouple also. This report deals with the study of the mineral-insulted ...

Finite Element Modeling of Freezing of Coffee Solution

C. Anandharamakrishnan, R. Gopirajah, and N. Chhanwal
Central Food Technological Research Institute
Karnataka, India

Freeze-drying is a popular method of producing shelf stable particulate products and is of particular value for drying thermally sensitive materials (volatiles and biological based), which can be heat damaged by higher temperature methods, such as spray-drying. Porous structures are formed by the creation of ice crystals during the freezing stage, which subsequently sublime during the drying ...

Simulation of Nuclear Radiation based Energy Harvesting Device using Piezoelectric Transducer

R. Prakash, K. M. V. Swamy, and B. G. Sheeparamatti
Basaveshwara Engineering College
Bagalkot, Karnataka,

MEMS(Microelectromechanical systems) based energy harvesting is process of extracting energy from natural resources in small amounts. Here, number of (millions) small energy harvesting modules lead to substancial energy. In this design, a piezoelectric material is used to scavenge energy from natural resources like radioactive source. COMSOL Multiphysics is used to model and simulate a ...

Characterization of a Tonpilz Transducer and Performance Analysis for a MEMS-Transducer Array

V. Vadde, and B. Lakshmi G

In this paper, we develop and analyze a standard piezoacoustic Tonpilz-transducer model for underwater acoustics in Comsol by addressing the attendant piezoelectric and pressure acoustic multiphysics phenomena. Transducer properties that are studied and characterized are the center frequency, bandwidth, linearity, sensitivity, and noise figure. In an effort to miniaturize the transducer, a ...

Design of a Miniaturized RF MEMS Based Single-Bit Phase Shifter

A. Chakraborty, A. Kundu, S. Chatterjee, and B. Gupta
Jadavpur University
West Bengal, India

This paper presents a novel design of single-bit RF MEMS phase shifter. The basic novelty introduced for phase shifter design in this case, is by scaling down of the lateral dimensions of the conventional RF MEMS shunt switch by 10 times. The Mechanical and Electromechanical analysis of the designed miniature RF MEMS fixed-fixed beam is performed using COMSOL Multiphysics v.3.5a as an FEM ...

Analysis of Magnetic Resonance in Metamaterial Structure

C. Rajni[1], and A. Marwaha[2]
[1] Shaheed Bhagat Singh College of Engineering And Technology, Ferozepur, Punjab, India
[2] Sant Longowal Institute of Engineering And Technology, Sangrur, Punjab, India

‘Metamaterial’ is one of the most recent topic in several areas of science and technology due to its vast potential in various applications. These are artificially fabricated materials which exhibit negative permittivity and/or negative permeability. The unusual electromagnetic properties of metamaterial has opened more opportunities for better antenna design to surmount the limitations of ...

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...