Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Fluid-Structure Interaction Modeling for an Optimized Design of a Piezoelectric Energy Harvesting MEMS Generator

I. Kuehne[1], A. van der Linden[2], J. Seidel[1], M. Schreiter[1], L. Fromme[2], and A. Frey[1]
[1]Siemens AG, Corporate Research & Technologies, Munich, Germany
[2]Comsol Multiphysics GmbH, Göttingen, Germany

This paper reports the design of a piezoelectric energy harvesting micro generator for an energy autonomous tire pressure monitoring wireless sensor node. For our design we use a piezoelectric MEMS generator approach without additional mass. The intrinsic mass of the cantilever is in the microgram region and the resulting acceleration forces are very small. The generator has a triangular ...

Coupled Electro-thermal Field Simulations in HVDC-Cables

H. Ye, E. M. Boudoudou, E. Scholz, and M. Clemens
Chair of Electromagnetic Theory
Bergische Universität Wuppertal
Wuppertal, Germany

For PE insulated cables both the temperature difference ?T and the electric field coefficient ? have a significant influence on the electric field distribution because PE has a nonlinear electric conductivity which is approximately a function of the temperature and the electric field strength. The coupled electric-thermal simulations are carried out for PE insulated HVDC-cables. The influence ...

Design of Electrochemical Machining Processes by Multiphysics Simulation

M. Hackert-Oschätzchen, S. F. Jahn, and A. Schubert
Chemnitz University of Technology
Chemnitz, Germany

The principle of electrochemical machining (ECM) is the anodic dissolution of a metallic workpiece at the interface to a liquid ionic conductor under the influence of electric charge transport. This erosion principle works independently from the mechanical hardness of the workpiece and is free of mechanical forces. The design of electrochemical machining processes is still performed ...

High Frequency Magnetohydrodynamic Calculations in COMSOL

N. Kleinknecht, and S. A. Halvorsen
Teknova AS
Kristiansand, Norway

In many metallurgical processes metals are (heated and) stirred by an oscillating external magnetic field. The magnetic field induces electric currents in the metal and the currents interact with the magnetic field to create a force, the Lorentz force. For high frequencies induction only takes place in an electromagnetic boundary layer due to the skin effect and the force is confined within this ...

Simulation of Deep Geothermal Heat Production

E. Holzbecher, P. Oberdorfer, F. Maier, and Y. Jin
Georg-August Universität Göttingen
Göttingen, Germany

Geothermal heat production from deep reservoirs (5000-7000 m) is currently examined, not only in Germany. Our reference set-up consists of two pipes within a single borehole: one for pumping. We examine a design, where a single borehole splits into two legs at a certain depth. The two legs are connected by highly permeable geological, natural or artificial strata in the deep subsurface. The ...

Simulation of Passive Magnetic Bearing Using COMSOL Multiphysics

K. Falkowski
Military University of Technology
Warsaw, Poland

The article presents the process of verification of the passive magnetic bearing by the Comsol Multiphysic program. There is shown construction of the radial passive magnetic bearing PMB60x85x20-5, which was designed in the Military University of Technology. The distribution of the magnetic flux density and the static characteristic of the bearing were estimated by the Comsol Multiphysic. The ...

The Microplane Model for Concrete in COMSOL

A. Frigerio
RSE S.p.A.
Milan, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method. In this frame, the choice of a constitutive law able to represent the complex mechanical behaviour of concrete is a key point. This paper deals with a detail description of all the steps needed to implement the Microplane Model in COMSOL; the formulation is based on the ...

Modeling and Simulation of Hydrogen Storage Device for Fuel Cell Plant Using COMSOL Multiphysics

O. Akanji, and A. Kolesnikov
Department of Chemical & Metallurgical Engineering
Tshwane University of Technolgy
Pretoria, South Africa

In this work, a 2D dynamic simulation for a portion of metal hydride based hydrogen storage tank was performed using computational software COMSOL 4.0a Multiphysics. The software is used to simulate the diffusion and heating of hydrogen in both radial and axial directions. The model consists of a system of partial differential equations (PDE) describing two dimensional heat and mass transfer of ...

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...

Benchmark of COMSOL vs. ROXIE Codes for the Calculation of a Particle Accelerator Quadrupole

I. Rodriguez, and J. L. Munoz
ESS Bilbao
Bilbao, Spain

The field quality requirements of most particle accelerator magnets are very tight and, therefore, very precise simulations are needed to accurately calculate these devices. CERN\'s ROXIE code is widely used as a reference software to calculate normal conducting and superconducting magnets for particle accelerator applications. ROXIE uses the full vector potential coupled to the BEM-FEM ...