Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Multiphysics Process Simulation of the Electromagnetic-Supported Laser Beam Welding

M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier
BAM Federal Institute for Materials Research and Testing
Berlin, Germany

The article deals with the magnetically-supported high-power full-penetration laser beam welding of aluminum. A stationary simulation was conducted accounting for the effects of natural convection, Marangoni convection and solid-liquid phase transition as well as an electromagnetic volume source term. An ac magnet below the weld specimen induces eddy currents. Consequently, Lorentz forces occur ...

Design of Electrochemical Machining Processes by Multiphysics Simulation

M. Hackert-Oschätzchen, S. F. Jahn, and A. Schubert
Chemnitz University of Technology
Chemnitz, Germany

The principle of electrochemical machining (ECM) is the anodic dissolution of a metallic workpiece at the interface to a liquid ionic conductor under the influence of electric charge transport. This erosion principle works independently from the mechanical hardness of the workpiece and is free of mechanical forces. The design of electrochemical machining processes is still performed ...

Heat and Mass Transfer in a Gypsum Board Subjected to Fire

B. Weber
Empa
Swiss Federal Laboratories for Materials Science and Technology
Duebendorf, Switzerland

Heat and mass transfer through a gypsum board exposed to fire is simulated and compared to experimental data. The gypsum board is modeled as a porous medium with moist air in the pores. A dehydration front develops at the fire side and travels through the board, consuming energy and releasing water vapor. The vapor migrates through the porous medium by convection and diffusion, and condenses in ...

Simulation of Deep Geothermal Heat Production

E. Holzbecher, P. Oberdorfer, F. Maier, and Y. Jin
Georg-August Universität Göttingen
Göttingen, Germany

Geothermal heat production from deep reservoirs (5000-7000 m) is currently examined, not only in Germany. Our reference set-up consists of two pipes within a single borehole: one for pumping. We examine a design, where a single borehole splits into two legs at a certain depth. The two legs are connected by highly permeable geological, natural or artificial strata in the deep subsurface. The ...

Multiphysics Modeling of a Gas Bubble Expansion

B. Chinè [1], and M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy and Instituto Tecnologico de Costa Rica, Cartago, Costa Rica
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Modeling and simulation softwares are very useful tools when we have to analyse and understand the different phenomena occurring during metal foams processing, because several simultaneous physical mechanisms have to be accounted for. In this work we use Comsol Multiphysics 4.2 to model a spherical hydrogen gas bubble expanding in aluminium liquid, initially at rest. The aim of the present ...

On the Simulation of the Lightning Strikes to Complex Grounded Structures

M. Becerra
Royal Institute of Technology
School of Engineering
Electromagnetic Engineering Lab
Stockholm, Sweden

There is a considerable world-wide interest among lightning protection engineers and designers on the improvement of the standard procedures to assess the location of the most vulnerable places on complex structures to be struck by lightning flashes. This paper presents the implementation of the Self-consistent Lightning Interception Model in Matlab by using the COMSOL Multiphysics 3.5 ...

Expert System for Synchronous Machines Based on COMSOL Multiphysics

G. E. Stebner, and C. Hartwig
Ostfalia University
IMEC
Wolfenbüttel, Germany

Even though the researches in synchronous machines are advanced, the practical design still is a problem because of the complex interaction between several design parameters. The project “EaSync” at the Ostfalia University focuses on the bundling of machine models using COMSOL Multiphysics® to create a semi-automatic engineering process. The project is based on student research projects and a ...

Modeling of a Switchable Permanent Magnet Magnetic Flux Actuator

I. Dirba, and J. Kleperis
Institute of Solid State Physics of University of Latvia
Riga, Latvia

A simple magnetic circuit consisting of ferromagnetic core material, air gap, permanent magnets and current coils can be used to form magnetic actuators, motors etc. devices. In this work the current coils are not used to generate working magnetic field, but just to switch magnetic flux created by permanent magnets in necessary direction. Analytical and numerical (Finite Element Model, ...

Heat Transfer in High-Voltage Surge Arresters

O. Fritz[1], M. Ljuslinder[2], and B. Doser[2]
[1]ABB Switzerland Ltd, Corporate Research, Baden-Dättwil, Switzerland
[2]ABB Switzerland Ltd, High Voltage Products, Wettingen, Switzerland

We present examples of the use of COMSOL Multiphysics for the solution of electrical conduction in varistors coupled to the solution of long-term heat-transport through conduction and convection. We fit measured power-loss and impedance data with analytic functions in order to simulate instant electric and transient thermal processes in one go. We systematically compare our results to data ...

Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in the Context of Corrosion Protection Systems

D. Schaefer[1], J. Doose[2], A. Rennings[1], and D. Erni[1]
[1]General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
[2]Technical Center for Ships and Naval Weapons (WTD 71), Bundeswehr, Eckernförde, Germany

Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed current cathodic protection (ICCP) systems. The electrode kinetics is considered by using boundary conditions ...