Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Solving a Two-Scale Model for Vacuum Drying by Using COMSOL Multiphysics

S. Sandoval Torres[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

Drying of porous materials is characterized by the invasion of a gaseous phase replacing the evaporating liquid phase. Vacuum drying is an advanced method applied to oakwood to diminish discoloration, so understand its physics is a very important task. In this work, a two-scale model is solved to simulate vacuum drying of oakwood. A two scale model describes the physics of wood-water relations ...

Investigation of Hydraulic Fracture Re-Orientation Effects in Tight Gas Reservoirs

B. Hagemann[1], J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal-Zellerfeld, Germany

In tight gas formations where the low matrix permeability prevents successful and economic production rates, hydraulic fracturing is required to produce a well at economic rates. As production from the well and its initial fracture declines, re-fracturing treatments are required to accelerate recovery. The orientation of the following hydraulic fracture depends on the actual stress-state of the ...

Multiphysics Modeling of Warm-Air Drying of Potatoes Slices

S. Sandoval Torres[1], A. de Lourdes Allier González[1], L.L. Méndez Lagunas[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

In this work we solve a model to simulate the drying of potatoes slices. The model considers both the transport of free and vapor water by applying a mechanistic approach. The critical moisture point (CMP) was considered, since it is a transition zone and it represents the point where water saturation is near from cero and hygroscopic domain begins. The CMP divides the hygroscopic and non ...

Keyhole Formation During Spot Laser Welding: Heat and Fluid Flow Modeling in a 2D Axisymmetric Configuration

M. Courtois[1], M. Carin[2], P. LeMasson[2], S. Gaied [1]
[1]ArcelorMittal, Global R&D, Montataire, France
[2]LIMATB Laboratory, Université de Bretagne Sud, Lorient, France

For a better understanding of phenomena associated to the appearance of defects in laser welding, a heat and fluid flow model is developed. This study is focused on the modeling of a static laser shot on a sample of steel. This 2D axialsymmetric configuration is used to study phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the ...

Simulation of PCM Melting Process in a Rectangular Enclosure Differentially Heated

G. Petrone[1], G. Cammarata[1]
[1]Department of Industrial Engineering, University of Catania, Catania, Italy

This study deals with a numerical investigation of the melting process of a PCM in a rectangular enclosure differentially heated. COMSOL Multiphysics is used in order to numerically solve Navier-Stokes and energy equations in the considered system. Adopting an enthalpy formulation, one single equation is used to solve transient conduction and convection heat transfer in both the solid and liquid ...

Electromagnetic Characterization of Big Aperture Magnet Used in Particle Beam Cancer Treatment

J. Osorio Moreno[1], M. Pullia[1], C. Priano[1]
[1]Fondazione CNAO, Pavia, Italy

Resistive magnets are one of the principal components of ion medical accelerator systems used in heavy ion cancer treatment. To fulfill medical requirements, like the size of irradiation field and an uniform dose distribution, some magnets of the transport beam line may require large aperture and a large region where the magnetic field is within specifications (good field region). After a ...

Numerical Investigation of the Convective Heat Transfer Enhancement in Coiled Tubes

L. Cattani[1]
[1]Dipartimento di Ingegneria Industriale, Università degli Studi di Parma, Parma, Italy

The work is focused on the numerical analysis of forced convection in curved tubes investigating the correlation between the heat transfer and friction factor enhancement and the effects of the wall curvature. The analysis was performed by integrating the continuity, momentum and energy equations within COMSOL Multiphysics. The local Nusselt number reaches values higher than the ones expected ...

Ampacity Simulation of a High Voltage Cable Used in Offshore Wind Farms

E. Pelster[1]
[1]Wenger Engineering, Ulm, Germany

The ampacity of a cable depends on the cross section of its conductor. When selecting a cable design for a specific application it is of interest to choose the lowest possible conductor cross section in order to reduce material costs. Therefore an exact calculation of the ampacity is necessary (it is usually limited by the thermal resistance of the insulating cable materials). Commonly the ...

A High Power Planar Triode Oscillator Designed by Using FEM Modeling

S. Lefeuvre[1], M. Ghomi[2]
[1]EURL CREAWAVE, Labège, France
[2]CALCEM, Ste Foy d'Aigrefeuille, France

COMSOL, adding SPICE® elements into its FEM, gives the possibility of a direct modeling of oscillators: triode and load are FEM described while all the other components of the circuit are just simulated using SPICE®. The modeling is not a straight application of any module but needs the previous computation of the conductivity of the beam through the PDE interface. This paper is a bench mark ...

Highly Concentrated Solar Radiation Measurement by Means of an Inverse Method

L. Mongibello[1], N. Bianco[2], R. Fucci[1], F. Moscariello[2]
[1]ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici, Italy
[2]DETEC - Università degli Studi di Napoli Federico II, Napoli, Italy

This work focuses on the numerical analysis conducted on the prototype sensor for the measurement of highly concentrated radiative heat fluxes, based on an inverse heat transfer method, realized at the ENEA Portici Research Center in collaboration with the DETEC department of the University of Naples Federico II. The estimates of highly concentrated radiative heat fluxes on the target surface of ...