Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Simulating Experimental Conditions of the HIIPER Space Propulsion Device

A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], D. Ahern[1], G. Miley[1]
[1]University of Illinois at Urbana - Champaign, Urbana, IL, USA

The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a Faraday cup, spherical Langmuir probe, and gridded energy analyzer have been developed for analyzing various ...

3D Multiphysics Modeling of Bulk High-Temperature Superconductors for Use as Trapped Field Magnets - new

M. Ainslie[1], J. Zou[1], D. Hu[1], D. Cardwell[1]
[1]Department of Engineering, University of Cambridge, Cambridge, UK

The authors are currently investigating the use of bulk high temperature superconductors as trapped field magnets (TFMs) in order to increase the electrical and magnetic loading of an axial gap, trapped flux-type superconducting electric machine. In electric machines, the use of superconducting materials can lead to increases in efficiency, as well as power density, which results in reductions ...

Simulation of the Impedance Response of Materials with More Than One Electrical Path

R. A. Gerhardt [1], Y. Jin [1],
[1] Georgia Institute of Technology, Atlanta, GA, USA

1. Introduction Polycrystalline single phase materials often display electrical properties that are a function of their grain size. Impedance spectroscopy, an alternating current technique is ideal for detecting the presence of more than one current path and has been used for many years[1,2]. However, it is proposed here that it may be possible to use concepts developed for two phase ...

Simulation of a Thermoelectric Spiral Structure

A. Arevalo [1], J. P. Rojas [1], D. Conchouso [1], M. M. Hussain [1], I. G. Foulds [2]
[1] Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
[2] The University of British Columbia, School of Engineering, Okanagan Campus, Canada

Energy efficiency and harvest, speed and performance, flexibility and portability are key elements for innovation in the current consumer electronics markets. Thermoelectric Generators can convert energy from heat gradients into electricity. Every source of heat from an electronics device can potentially be used as a source of energy. This generators have the advantage of: being silent, compact, ...

Nonlinear Ferrohydrodynamics of Magnetic Fluids

Markus Zahn
Professor,
Massachusetts Institute of Technology, Cambridge, MA, USA

Markus Zahn received all his education at MIT, was a professor in the Department of Electrical Engineering at the University of Florida, Gainesville from 1970-1980, and then joined the MIT Department of Electrical Engineering and Computer Science faculty in 1980. He works in the Laboratory for Eelectromagnetic and Eelectronic Systems, in the MIT High Voltage Research Laboratory, is the Director ...

Optimization of Skin Impedance Sensor Design with Finite Element Simulations

F. Dewarrat, L. Falco, A. Caduff, and M. Talary
Solianis Monitoring AG, Zürich, Switzerland

Impedance spectroscopy is a measurement technique that has been investigated in a wide variety of medical applications. An example is the measurement of the dielectric properties of the skin and underlying tissue using sensors placed in contact with human skin with capacitive fringing field electrodes. The aim of this work is to use finite element methods for optimizing the sensor design ...

Using COMSOL Multiphysics in Eddy Current Non Destructive Testing Context

L. Santandrea, and Y. Le Bihan
Laboratoire de Génie Electrique de Paris, Gif-sur-Yvette, France

Eddy current testing (ECT) is widely used to check the integrity of electrically conducting parts and notably to detect flaws. It is based on the interaction between a probe and the part under testing. The finite element method (FEM) is well fitted to the modelling of these kinds of problems because of its large flexibility which allows to deal with complex probe and part configurations. In this ...

Features and Limitations of 2D Active Magnetic Levitation Systems Modeling in COMSOL Multiphysics

A. Piłat
AGH University of Science and Technology, Kraków, Poland

This elaboration presents the Active Magnetic Suspension (AMS) and radial Active Magnetic Bearing (AMB) as a representative of the Active Magnetic Levitation Systems (AMLS). The laboratory test rigs are analyzed in the 2D space. The control algorithm as well as the motion dynamics are implemented directly in COMSOL Multiphysics. The discussion on features and limitations is provided to show an ...

2D Eddy Current Analysis in Plane of Laminated Ferromagnetic Media

B. Scheerlinck[1], P. Sergeant[1]
[1]University College Ghent, Gent, Belgium

Laminated media are intended to conduct the magnetic flux in the plane (high resistance to limit the eddy currents). When fringing flux falls in perpendicularly to the plane, the surface for the eddy currents is no longer small. This will cause eddy current losses, which will reduce the efficiency of the application. A 2D FEM model for in plane losses in laminated ferromagnetic media due to ...

Estudo Numérico da Eletroquimioterapia em Tumor Cutâneo com Diferentes Configurações de Eletrodos - new

G. Neves[1], D. Suzuki[1], J. Alvim[1], M. Rangel[2]
[1]Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
[2]Vet Câncer Oncologia Veterinária, São Paulo, SP, Brasil

A eletroquimioterapia é um tratamento de câncer que utiliza a combinação de agentes quimioterápicos e campos elétricos. A base teórica por trás dessa aplicação é a eletroporação. Esse fenômeno biológico consiste na abertura de poros na membrana celular devido à aplicação de pulsos elétricos. Este trabalho analisa o comportamento do campo elétrico gerado por pulsos elétricos aplicados em ...