Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Model for High Temperature Inductive Heating

S.A. Halvorsen[1]
[1]Teknova AS, Kristiansand, Norway

COMSOL Multiphysics has been applied to develop a model for inductive heating. A coarse, lumped model of the interior of a high temperature reactor is coupled to finite element models for the electromagnetic field, the temperature distribution outside the reactor, and mechanical stresses in the crucible. The model can be applied to study operational conditions, thermal stresses, or design ...

Identification and Analysis of Low-Frequency Cogging Torque Component in Permanent Magnet Machines

D. McIntosh
Sonsight Inc. / NSWC, Accokeek, MD, USA

Cogging torque in permanent magnet motors and generators is characterized by a torque ripple. These torque fluctuations cause vibrations, noise and speed fluctuations. This paper presents finite element (FE) analyses results that show a previously unaddressed low frequency modulation of cogging torque ripple. The paper resulted in an analytical formulation of cogging torque with low frequency ...

Dynamic Simulation of Electromagnets

Harald Biller
Continental Automotive Systems, Frankfurt, Germany

Harald Biller studied mathematics and physics at Darmstadt, London, and Würzburg. In 1999, he received his PhD from Stuttgart University, specializing in functional analysis, topology, and Lie theory. He worked as a lecturer at Darmstadt University until 2004, when he became a development engineer with the automotive supplier Continental, one of the leading producers of electronic brake and ...

Features and Limitations of 2D Active Magnetic Levitation Systems Modeling in COMSOL Multiphysics

A. Piłat
AGH University of Science and Technology, Kraków, Poland

This elaboration presents the Active Magnetic Suspension (AMS) and radial Active Magnetic Bearing (AMB) as a representative of the Active Magnetic Levitation Systems (AMLS). The laboratory test rigs are analyzed in the 2D space. The control algorithm as well as the motion dynamics are implemented directly in COMSOL Multiphysics. The discussion on features and limitations is provided to show an ...

Current Distribution and Magnetic Fields in Complex Structures Using Comsol Multiphysics

S. F. Madsen, and C. Falkenstrøm Mieritz ApS
Lejre, Denmark

The present paper presents numerical calculations of the magnetic fields and the current distribution within a wind turbine nacelle. The results are used by control system engineers designing panels and cables, who must ensure that the immunity of the equipment complies with the environment within the turbine. Since the release of the International standard concerning lightning protection of ...

Coupled Electromagnetic - Dynamic FEM Simulation of A High Frequency MEMS Energy Harvester

E. Topal
Middle East Technical University

In this study, a detailed finite element model coupling the motion dynamics and electromagnetics of a diaphragm based MEMS vibration energy harvester is presented. The energy harvester converts low frequency vibrations to high frequency response by magnetic actuation of a diaphragm carrying coils. AC/DC, Solid Mechanics and Moving Mesh (ALE) modules are coupled together in one 3-D model to ...

Modeling Magnetic Configurations for Improved Separations of Magnetic and Non-Magnetic Materials

S. Khushrushahi[1], T.A. Hatton[1], M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Magnetic separation of magnetic liquid phases/particles from non-magnetic liquid phases/particles are needed for applications such as cleaning up oil spills by separating oil and water liquid phases or separating magnetic materials from non-magnetic materials in biomedical and microfluidic applications. Magnetic fluids (also called ferrofluids), in a magnetic field, experience a magnetic force ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic ...

COMSOL Multiphysics® Software: Time-Lapse Electrical Resistivity Inversion - new

T. K. Chou[1], M. Chouteau[1], M. J. Yi[2]
[1]Department of Civil, Geological & Mining Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
[2]Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea

Time-lapse electrical resistivity tomography (ERT) method provides a non-invasive way to monitor subtle sub-surface changes caused by water flow such as in an infiltration test. Problems arise when the inversion models contain artifacts due to measurement errors, rapid change in soil electrical property during measurement time, etc. A new approach was developed by Kim et al. (2004) and (2009) ...

Simulation of GMR in Granular C/Co Nanoparticles in Agarose - new

P. Hainke[1], D. Kappe[1], A. Hütten[1]
[1]Universität Bielefeld, Bielefeld, Germany

As the importance of nanoparticles is growing more and more, controlling and understanding the properties of nanoparticles became a focus of research. In this field Meyer at al. [1] are researching the GMR effect in granular gels to develop magnetoresistive sensors. The GMR in granular gels is simulated to investigate the physical processes in those systems. As soon as the models coincide with ...