Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Shielding Cylinder Effect in High-Speed Electric Machines

B. Hannon[1], P. Sergeant[1]
[1]Ghent University, Ghent, Belgium

In the field of electric machines, a trend towards both higher efficiency and higher power density is observed. This has led to a growing importance of Permanent Magnet Synchronous Machines. However, the magnets used in these machines risk demagnetization at high temperatures. Especially in machines operated at high speeds. A commonly proposed solution is the shielding cylinder (SC), a ...

Finite Element Modeling of Remote Field Eddy Current Phenomenon

T. Jayakumar[1], B. Purnachandra Rao[2], C. K. Mukhopadhyay[3], B. Sasi[2], V. Arjun[5], S. Thirunavukkarasu[2]
[1]Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[3]EMSI Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN, India
[5]NDE Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India

Remote field eddy current (RFEC) technique is a method of detecting defects in ferromagnetic tubes. This is based on low frequency eddy current, which employs an exciter coil and a receiver coil separated by a characteristic distance. The exciter is fed with a low frequency sinusoidal current and the receiver coil senses the perturbation of the magnetic fields caused by the eddy currents in the ...

Inductance of Magnetic Plated Wires as a Function of Frequency and Plating Thickness

T. Graf[1], O. Schälli[1], A. Furrer[1], and P. Marty[1]

[1]Technik und Architektur, Hochschule Luzern, Horw, Switzerland

This paper analyzes the magnetic behavior of electroplated wires. For this purpose the resistance and inductance of single turn loops and coils have been simulated and measured. The measurement is delicate due to the influence of a stray capacitance. We show that the quality factor of magnetic plated loops and coils can be tuned easily by the plating thickness. In addition the quality factor of ...

Accuracy Assessment of The Linear Induction Motor Performance using Adaptive FEM

M. Manna[1], S. Marwaha[1], and C. Vasudeva[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed since the discovery of the wheel. Electromagnetic forces may also be employed to produce the linear motion resulting in linear motion electrical machines. The performance of a high speed LIM is severely degraded by "End Effects". The paper ...

Elucidating the Mechanism Governing the Cell Rotation Behavior Under DEP

G. Zhang[1], Y. Zhao[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In our experiments with manipulating cells with DEP, we noted that some cells are constantly spining. By hypothesing that the cell spining is caused by the non-circular shape of the cell body and the off-centered location of its nucleus and that the rotation direction depends on the relative location of nucleus with respect to the electrical field, we found that the observed cell rotation was ...

Investigating Magnetic and Electric Fields Couplings for 3D Models in Harmonic and Transient States

O. Maloberti [1], O. Mansour [1]
[1] ESIEE Amiens, Amiens, France

At present, no 3D transient magnetic and electric fields formulation with strong eddy currents and high electric fields is available in the physical applications with COMSOL Multiphysics® software. However, some industrial products need such a tool, as it is the case for induction coils of pulsed magnetic technologies. The principle is to induce a force thanks to strong eddy currents induced by ...

Interactive Design of an Electrostatic Headphone Speaker Using COMSOL Server™

B. A. Marmo [1], M. P. Snaith [1],
[1] Xi Engineering Consultants, Edinburgh, United Kingdom

An electrostatic headphone includes many interrelated design elements that affect the frequency response of the headphone and the users listening experience. Xi Engineering Consultants (XI) partnered with Warwick Audio Technologies (WAT) to investigate the complex behavior of one-side electrostatic speakers. Xi developed a GUI that helped WAT engineers optimize their speaker using virtual tools ...

基于COMSOL的随钻电磁波电阻率仪器WPR探测特性研究

康正明 [1], 柯式镇 [1], 姜明 [1], 尹成芳 [1],
[1] 中国石油大学(北京),北京,中国

引言:随着水平井和大斜度井的增多,随钻测井(LWD)技术越来越重要。随钻电磁波电阻率测井在随钻测井中应用最为广泛。在国外,随钻电磁波电阻率测井方法已经成为一种成熟的测井技术,但我国仍处于研究发展阶段。20世纪90年代,大庆成功地研制出2MHz电磁波电阻率测井仪器。本世纪,中油测井成功引进并研制出了随钻电磁波电阻率测井仪WPR。仪器仿真对国内引进该仪器进行生产以及实际测井资料处理解释具有指导意义。本文借助COMSOL Multiphysics®仿真平台,建立了二维轴对称模型。模型分为三层和多层,选择AC/DC模块中的磁场。通过LiveLink for MATLAB®实现脚本加载模型并控制数据按一定格式输出为文本文件。考查了APS公司的随钻电磁波电阻率仪器WPR仪器的探测特性,对比了仿真结果与APS公司商业宣传介绍的仪器特性。同时对比了COMSOL与同类有限元仿真软件的误差 ...

Electromagnetic and Coupled Field Computations: A Perspective

S. V. Kulkarni
Indian Institute of Technology
Bombay, India

S. V. Kulkarni a Professor in Electrical Engineering Department, Indian Institute of Technology, Bombay, India. Previously, he worked at Crompton Greaves Limited and specialized in the design and development of transformers up to 400 kV class. He has authored book \"Transformer Engineering: Design and Practice\" published by Marcel Dekker, Taylor & Francis Group. The author of more than 120 ...

Two-Dimensional Quasi–Static Analysis For Induction Motor with Faulty Rotor

M. Manna, and S. Miglani
SLIET
Sangrur
Punjab, India

This paper presents the Finite Element Method technique for predicting performance of Induction motor having Electric and Magnetic asymmetry for rotor cage due to some broken rotor bars. The motor parameters like magnetic vector potential, flux density, surface currents have been determined very precisely by carrying out two dimensional quasi static, transient analysis and by using one of the ...