Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Rotating Magnetic Field Eddy Current Probe for Inspection of Tubular Metallic Components

T. V. Shyam[1], B. S. V. G. Sharma[1], K. Madhusoodanan[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Rotating Magnetic Field Eddy current technique is a promising technique for inspection of flaws in metallic tubular components. Three primary coils, 120 degrees apart in space, are excited with three phase current source, by virtue, a rotating magnetic field polarised in radial direction is generated. This radial field interacts with metallic tube and generates ...

Using Perturbation Force Analysis for the Design of a Levitronc: an Application of Magnetic Levitation

Z. De Grève[1,2], C.Versèle[1], and J.Lobry[1]
[1]Faculty of Engineering, Mons, Belgium
[2]Belgian Fund for Research, F.R.S./FNRS, ResearchFellow, Belgium

The Levitron offers an interesting demonstration of natural magnetic levitation using permanent magnets. It is composed by a small magnetized top and a circular magnetized base with a hole on its center. The top is placed in an area where magnetic field configuration and gyroscopic torques allow the existence of a locus of stable equilibrium. In this paper, we intend to dimension and realize a ...

Development of an On-Line Wall-Fouling Sensor for Pipeline Transportation of Heavy Oil-Water Mixtures

S. Rushd[1], and R.S. Sanders[1]
[1]Chemical & Materials Engineering Department, University of Alberta, Edmonton, AB, Canada

A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss of the lubricating water layer in the pipe. This issue can be addressed by using capacitance sensors to ...

Current Density, Electric Field and AC Loss Simulation of Mono Block and Single Layer Polygonal HTS Cable Using COMSOL Multiphysics

G. Konar[2], R. K. Mandal[1], and N. Chakraborty[2]
[1]Electrical Engineering Department, Seacom Engineering College, Dhulagar,West Bengal, India
[2]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

High temperature super conducting (HTS) cables are gaining attentions for their ability to transmit more power compared to their convention counterparts with essentially no resistance and electromagnetic emissions. They are also appropriate for solving the grid congestion problem in the power corridors with their reduced size and weight. But the AC loss that occurs in the HTS cables reduces the ...

Simulation of Microfabricated Linear Ion Trap

J. Heinonen[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

We present a simplified 3D model that simulates the operation of a linear microscale integrated ion trap. It employs a set of metalized electrodes, which are formed on top of an insulator layer on silicon substrate. The confinement in all three dimensions is provided by the application of the specific AC and DC voltages to the corresponding trap electrodes. The distribution of the trapping ...

Electrical Scale-Up of Metallurgical Processes - new

R. Schlanbusch[1], S. A. Halvorsen[1], S. Shinkevich[1], D. Gómez[2]
[1]Teknova, Kristiansand, Norway
[2]Department of Applied Mathematics & ITMATI, Universidade de Santiago de Compostela, La Coruña, Spain

The problem under investigation is electrical scale-up of a generic metallurgical process for primary metal production through resistive heating of slag by electric current, typically supplied by an AC three-phase system. Maxwell’s equations are analyzed revealing that the properties of the solution is determined by the parameter (L/δ)^2, where L is the linear size of the system and δ is the ...

First Approach Toward a Modeling of the Impedance Spectroscopic Behavior of Microbial Living Cells

D. Rauly [1], P. Xavier [1], E. Chamberod [2], J. M. F. Martins [3], J. Angelidis [4], H. Belbachir [5]
[1] IMEP-LAHC, Universite Grenoble Alpes, France
[2] IUT, Universite Grenoble Alpes, France
[3] LTHE, Grenoble Alps University - CNRS - IRD, France
[4] LEAS, St. Ismier, France
[5] HBA Biotech SA, Grenoble, France

The subject of the interactions between electromagnetic (EM) fields and living cells is a strong issue for several decades [1]. Large number of works have been done to study the EM field penetration and inner induced currents in living microorganisms. Relevant information to be collected deals with level and frequency of the EM signal that may affect the development of the considered cells. The ...

电磁力作用下金属小车的减速刹车过程研究

李晓南 [1], 刘国强 [1],
[1] 中国科学院电工研究所,北京,中国

利用惯性力学和电磁学,研究了一个金属小车沿着磁铁铺就的轨道做减速直线运动。其中,小车也可以看成是携带等量的磁铁剩磁,且沿着铁磁轨道减速运动。通过赋予小车一个初速度,例如100 m/s,然后再根据实际情况、赋予它一个特征密度,即小车有了一定的质量。当认为小车沿水平方向的轨道减速运动,忽略重力、空气阻力等其他一些影响因素时,小车将只受电磁的洛伦兹力的作用,而逐渐减速到零。 利用最新版的 COMSOL Multiphysics®,建模过程中,主要用到了“磁场和电场(mef)”和“全局常微分和微分代数方程(ge)”接口,涉及到的动力学和电磁学方程为 dv/dt=F/m F ⃗=∫_(V_vehicle)▒〖(J_induced ) ⃗×B ⃗dv〗 J_(i_y)=σ(v_z∙B_x-v_x∙B_z ) v 为小车即时速度,F 为洛伦兹力,J 为感应产生的涡流,v 为速度,B ...

Highest Pulsed Magnetic Fields in Science and Technology, Assisted by Advanced Finite-Element Simulation

Thomas Herrmannsdörfer

Dr.
Forschungszentrum Dresden-Rossendorf, Germany

Thomas Herrmannsdörfer got his PhD in experimental physics from the University of Bayreuth in 1994. In 1995, he received the Research Award of the Emil-Warburg-Foundation while he worked at the DFG-Graduiertenkolleg Bayreuth. From 1995 – 1998 he worked as a scientist at Hahn-Meitner-Institute (HMI) Berlin. Since 1998, he has worked at Forschungszentrum Dresden ...

Electromagnet Shape Optimization using Improved Discrete Particle Swarm Optimization (IDPSO)

R. S. Wadhwa[1], T. Lien[1], and G. Monkman[2]
[1]NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, Norway
[2]FH Regensburg, Regensburg, Germany

The magnetic field gradient produced by an electromagnet gripper head depends on its design. Stochastic Methods offer certain robustness to the design optimization process. In this paper, Improved Discrete Particle Swarm Optimization (IDPSO) searching technique is applied to the shape and magnetic field gradient optimization of an electromagnet head. The magnetic field and forces are ...