Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing a Current Injection Tool for Logging While Drilling

B. Oetiker[1], B. Friedman[1], and H.E. Hall Jr.[1]

[1]Department of Physics, Sam Houston State University, Huntsville, Texas, USA

High-resolution imaging is useful in oil and gas exploration to identify producing fractures that can be in the millimeter thickness range. In principle, high-resolution imaging maybe achieved using “current injection” to measure the electrical conductivity of the formation. Two current injection devices are compared for possible use as Logging While Drilling (LWD)imaging: The ...

Towards Optimized Neural Stimulation in a Device for Urinary Incontinence

A.N. Shiraz[1], A. Demosthenous[1]
[1]E&EE Department, University College London, London, United Kingdom

After spinal cord injury (SCI) the functions of the lower urinary tract are often disrupted and may have fatal consequences for the patient. It has been shown that using a transrectal probe developed by Craggs et al., through conditional transrectal stimulation of pudendal nerve, it is possible to treat hyperreflexia in some of the SCI patients. To maximise the efficacy of this type of ...

Coupling Picosecond Terahertz Pulses to a Scanning Tunneling Microscope

P. H. Nguyen [1], C. Rathje [2], G. J. Hornig [1], V. Jelic [1], C. Ropers [2], F. A. Hegmann [1],
[1] University of Alberta, Edmonton, AB, Canada
[2] 4th Physical Institute, University of Göttingen, Göttingen, Germany

Probing ultrafast processes over subpicosecond and picosecond time scales provides fundamental insight into the nature of materials. We have experimentally demonstrated terahertz (THz)-pulse-induced tunneling in a scanning tunneling microscope (THz-STM) to image surfaces with simultaneous nanometer spatial resolution and subpicosecond time resolution [1]. However, the exact mechanism by which ...

Implicit Large Eddy Simulations of 2D Flow and Heat Transfer in Thermoacoustic Resonators

N. Martaj [1,2], S. Savarese [3], S. Kouidri [3], M. M. ALI [4,5]
[1] EPF Ecole d’ingénieurs, Montpellier, France
[2] Institut d'Electronique et des Systèmes, Université de Montpellier, Montpellier, France
[3] Armélio, Les Ulis, Courtabœuf, France
[4] LIMSI-CNRS, Orsay, France
[5] UPMC Univ Paris 06, Paris, France

The reduction of energy consumption in the building sector (nearly 40% of the energy consumption in Europe) is a real challenge to achieve the objective of the “2020 European climate and energy package”. In recent years, great interest is observed for the Stirling thermoacoustic machines. Nonlinearities due to the high level of acoustic pressure generate DC flows that are superimposed on the ...

Modeling Directional Two Arm Archimedes Spiral Coils in the RF Electromagnet Range

A. Kalinowski, and J. Maguire
Naval Undersea Warfare Center/Div. Npt. , Newport, RI, USA

The paper addresses a class of problems for modeling and consequently simulating the electromagnetic field radiation pattern from a two arm Archimedes spiral coil. The performance of particular interest is knowledge of the radiated magnetic field H and electric field E in the neighborhood of the coil. The results in this paper illustrate how COMSOL is used to solve for the radiated ...

Track Visualisation of Charged Particles in a Dipole Magnetic Field

B. Polychronopulos
Smiths Detection (Watford) Ltd, Watford, UK

This paper presents results on the visualisation of tracks of charged particles in a non-uniform magnetic field. The field modelled is that generated by a coil driven by DC current. The motion of typical particles, such as electrons, ions and multiply-charged heavy particles has been simulated.  The motion is initially assumed to be in vacuum, so that collisions with neutral particles can ...

Particle Focusing Optimization and Stress Analysis of a Magnetic Horn

S. di Luise[1], A. Rubbia[2]
[1]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland and CERN European Organization for Nuclear Research, Geneva, Switzerland
[2]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland

A neutrino oscillation experiment aims to the observation of the transformation of a neutrino of a given flavour into a neutrino of a different flavour. A beam of neutrinos is produced through the decay of charged pions which in turn are produced in the collision of high energy accelerated protons impinging on a thick target. A series of magnetic horns is used to focus charged particles produced ...

Effect of a High Frequency Field on the Electric Double Layer Surrounding a Biomolecule in a Fluid - new

M. Riou[1], C. Maedler[1], S. Erramilli[1], P. Mohanty[1]
[1]Boston University, Boston, MA, USA

Biosensors based on silicon nanowires are of great interest for ultrasensitive biomolecular recognition of disease specific markers for early stage diagnosis [1]. However, there are limitations on the performance of these nanosensors in solutions at high ionic strength. This is because the electric field induced by the binding of biomolecule is partially screened on length-scales larger than the ...

Simulation of Flaw Signals in a Magnetic Flux Leakage Inspection Procedure

O. Nemitz, and T. Schmitte
Salzgitter Mannesmann Forschung GmbH, Duisburg, Germany

In the inspection of steel products with respect to flaws a magnetic flux leakage (MFL) test procedure can be applied. In this procedure a “horseshoe” shaped yoke is used, whose legs are wrapped with coils through which an alternate current with a high frequency (3 kHz) is flowing. Hereby a thin magnetic field is induced near the surface of the test object which leaks from the material if a flaw ...

Electromagnetic and Coupled Field Computations: A Perspective

S. V. Kulkarni
Indian Institute of Technology
Bombay, India

S. V. Kulkarni a Professor in Electrical Engineering Department, Indian Institute of Technology, Bombay, India. Previously, he worked at Crompton Greaves Limited and specialized in the design and development of transformers up to 400 kV class. He has authored book \"Transformer Engineering: Design and Practice\" published by Marcel Dekker, Taylor & Francis Group. The author of more than 120 ...