Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Accuracy Assessment of The Linear Induction Motor Performance using Adaptive FEM

M. Manna[1], S. Marwaha[1], and C. Vasudeva[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed since the discovery of the wheel. Electromagnetic forces may also be employed to produce the linear motion resulting in linear motion electrical machines. The performance of a high speed LIM is severely degraded by "End Effects". The paper ...

Parametric Model Of An Air-Core Measuring Transformer

D. Herceg
Faculty of Technical Science, Novi Sad, Serbia

Power grid voltages and currents may be distorted due to presence of harmonics. Measurements of such voltage with harmonics may be performed using newly developed instrument with a small air-core transformer based probe as the input unit. The probe must be shielded against unknown external electromagnetic fields. At the same time, the probe must remain linear throughout the range of frequencies. ...

Effect of an Iron Yoke of the Field Homogeneity in a Superconducting Double-Helix Bent Dipole

P.J. Masson, and R.B. Meinke
Advanced Magnet Lab, Palm Bay, FL, USA

Charged particle accelerators require large dipole fields with stringent homogeneity requirements needed to bend particle beams without defocussing. Commonly superconducting saddle coil magnets are used with an iron core to enhance the bore field. The iron uneven magnetization brings undesired multipole fields that need to be compensated for by pre-conditioning the beam with additional magnets. ...

Coupled Magnetodynamic and Electric Circuit Models for Superconducting Fault Current Limiter

L. Graber[1], J. Kvitkovic[1], T. Chiocchio[1], M. Steurer[1], S. Pamidi[1], and A. Usoskin[2]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL
[2]Bruker Energy & Supercon Technologies Inc., Billerica, MA

Finite element models, which include the shielding characteristics of superconductors are often complex and would currently not allow us to study 3D models of devices of complex geometry such as fault current limiters. We propose instead a model based on variable electric conductivity, which is suitable to simulate magnetic field characteristics of inductive superconducting fault current ...

Topographic Effects on Radio Magnetotelluric Simulations on Levees: Numerical Modeling for Future Comparison With Fields Results

R. Duval[1], C. Fauchard[1], R. Antoine[1]
[1]ERA23-IFSTTAR, Laboratoire des Ponts et Chaussées de Rouen, CETE-Normandie Centre, France

We study the topography influence of levees on the electric resistivity signal obtained with the Radio-Magnetotelluric method. Field measurements have been modeled with COMSOL, using the AC/DC and RF Modules. A levee situated in Orléans along the Loire river (France) has been considered in order to design a model tacking account of the skin depth and the incident wavelength, keeping a constant ...

Simulation of a Magnetic Induction Method for Determining Passive Electrical Property Changes of Human Trunk Due to Vital Activities

H. Mahdavi[1], J. Rosell Ferrer[1]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain

The human body consists of many different types of tissues each with specific passive electrical properties. Vital activities lead to a characteristic change of these properties and geometrical changes. Magnetic induction is a non-contact method which can be used to determine these changes. The method is based on the creation of a primary magnetic field that will produce eddy currents in the ...

Finite Element Modeling of Remote Field Eddy Current Phenomenon

T. Jayakumar[1], B. Purnachandra Rao[2], C. K. Mukhopadhyay[3], B. Sasi[2], V. Arjun[5], S. Thirunavukkarasu[2]
[1]Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[3]EMSI Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN, India
[5]NDE Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India

Remote field eddy current (RFEC) technique is a method of detecting defects in ferromagnetic tubes. This is based on low frequency eddy current, which employs an exciter coil and a receiver coil separated by a characteristic distance. The exciter is fed with a low frequency sinusoidal current and the receiver coil senses the perturbation of the magnetic fields caused by the eddy currents in the ...

Carbon Steel Pipeline Wall Thickness Measurement Using Pulsed Eddy Current Technique - new

S. Roy[1], S. K. Pradhan[1], T. V. Shyam[2], B. S. V. G. Sharma[2],
[1] Atomic Energy Regulatory Board, Mumbai, Maharashtra, India
[2] Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Carbon Steel pipes are used as feeder pipes in Pressurized Heavy Water Nuclear Reactors for carrying the coolant from the inlet headers to the coolant channel and again from outlet of the coolant channel to the outlet headers and are part of the Primary Heat Transport (PHT) System of Reactor. It has been observed that these feeders suffer from Flow Accelerated Corrosion (FAC) at the bends and ...

The Effects of a Superparamagnetic Ground on the EMI Response of a Target - new

A. T. Clark[1]
[1]Research & Development, WM Robots LLC, Colmar, PA, USA

Soil’s electromagnetic properties adversely affect the performance of electromagnetic induction (EMI) sensors and if conditions are severe enough, render them useless. A simple circuit model is often used to express the electromagnetic induction response of a target analytically. This analytic model produces a response function that contains unique characteristics based on the target’s ...

Influence of Voltage Type and Polarity on Electric Field Distribution Along a Polymeric Insulator

Arshad [1], Dr. A. Nekahi [1], S. McMeekin [1], M. Farzaneh [2]
[1] School of Engineering and Built Environment, Glasgow Caledonian University, United Kingdom
[2] Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE), Université du Québec à Chicoutimi, QC, Canada

Electric field distribution along an insulator surface is of prime importance for the long term performance of insulators. In this paper electric field and potential distribution along a standard 33 kV polymeric insulator were investigated under different pollution conditions. Effect of voltage type and polarity on the electric field and potential distribution under contaminated conditions were ...