Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Acoustic Waveguides for Ear Impedance Measurements

R. Sisto[1], L. Cerini[1], D. Mambro[2], A. Moleti[2], F. Sanjust[1]
[1]INAIL Research, Monteporzio Catone, Italy
[2]Università di Roma, Tor Vergata, Italy

The otoacoustic emissions (OAEs) are acoustic signals emitted by the inner ear as a consequence of the activity of a nonlinear feedback mechanism capable of amplifying the signal near to the hearing threshold level. The otoacoustic emissions can be used as an acoustic imaging of the cochlear functionality. They are used in clinics for screening purposes but due to the extreme variability ...

Numerical Modeling and Verification of Acoustic Streaming Induced by Ultrasonic Treatment

D. Rubinetti [1], D. A. Weiss [1], J. Müller [2], A. Wahlen [2],
[1] Institute of Thermal and Fluid Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
[2] Institute of Product and Production Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland

Acoustic Streaming, Attenuation, Pressure Acoustics, CFD, Time-Averaged Variables

Virtual Commissioning of Large Machines with COMSOL Multiphysics® Software

K. Kryniski [1], A. Trangard [1],
[1] ABB Corporate Research, Västerås, Sweden

In addition to using advanced functions built-into the engine of the COMSOL Multiphysics® software, we integrate dynamic properties of rotating components that are measured or pre-computed. Here, it is shown how to integrate fluid-film characteristics and take advantage of post-processing and graphics to present the results to the customers using the Cloud. COMSOL® simulations of rotor-bearing ...

Simulating Acoustic Combustion Chamber Eigenmodes to Facilitate Combustion Stability in Rocket Engines

R. Kaess [1], J. Braun [1],
[1] Airbus Safran Launchers, Ottobrunn, Germany

Airbus Safran Launchers is the market leader in Space Launch services. Rocket engines are among the most powerful machines that exist. The core of the rocket engine is the combustion chamber where in the case of liquid propellant rocket engines, fuel and oxidizer are injected, mixed and burnt and where, consequently, the energy release takes place. The hot combustion gases are accelerated in a ...

Numerical Modelling of Wave Propagation in Particulate Composites

P. S. K. Mylavarapu, and S. Boddapati
Defence Metallurgical Research Laboratory

Syntactic foams are hollow particle filled composites that have recently emerged as attractive materials for use in advanced structural applications in aerospace and defence industry. Ultrasonic characterization of these foams is performed extensively in order to understand the effect of porosity and particle size on the ultrasonic properties such as longitudinal velocity and attenuation. ...

A Study into the Acoustic and Vibrational Effects of Carbon Fiber Reinforced Plastic as a Sole Manufacturing Material for Acoustic Guitars

J. O'Donnell[1], G. McRobbie[1]
[1]University of the West of Scotland, Paisley, Scotland, United Kingdom

This study will research a modern design of acoustic guitar by analysis of the vibrational modes. The guitar that will undergo testing has been provided by Emerald Guitars and is solely constructed using Carbon Fiber Reinforced Plastic (CFRP). With the use of COMSOL Multiphysics© the soundboard of the guitar will be simulated and analysis will be carried out to determine the first 10 ...

Design and Simulation of an Orbiting Piezoelectric MEMS Gyroscope Based on Detection of Phase-Shift Signals - new

S. Gorelick[1], J. R. Dekker[1], B. Guo[1], H. Rimminen[1]
[1] VTT Technical Research Centre of Finland, Espoo, Finland

The feasibility of phase-sensitive detection of angular-rates using bi-directional orbiting piezoresonators suspended by thick annular springs with thin-film aluminium nitride piezoactuators on top of them was investigated. The ring-shaped flexures are more suitable for supporting the orbiting motion due to their angle-dependent spring constant. The response of the orbiting resonators to ...

A Finite Element Model of Shear Wave Propagation Induced by an Acoustic Radiation Force Impulse

R. De Luca[1,2], J. Fromageau[1], H.W. Chan[1], F. Marinozzi[2], J. Bamber[1]
[1]Institute of Cancer Research and Royal Marsden Hospital, Sutton, England, United Kingdom
[2]Sapienza University of Rome, Dept. of Mechanical and Aerospace Engineering, Rome, Italy

Shear wave elastography is an innovative technique used in combination with the traditional ultrasound imaging to improve the specificity of cancer imaging. A two-dimensional finite element model (FEM), composed of realistic boundary conditions, was developed in COMSOL Multiphysics® to simulate the propagation of shear waves induced by an acoustic radiation force impulse (ARFI) in isotropic, ...

Modeling the Acoustic Scattering from Objects Buried in Porous Sediment Using COMSOL Multiphysics® Software

A. Bonomo [1], M. Isakson [1],
[1] Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

A frequency-domain finite element (FE) technique for computing the acoustic scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field based on Ref. 1 is extended to poroelastic media and implemented in COMSOL Multiphysics® software. This method allows for the scattering body to consist of any number of acoustic, elastic, and poroelastic domains. The ...

Phonon Tunneling Loss Solver for Micro- and Nanomechanical Resonators

G.D. Cole[1], M. Aspelmeyer[1], and I. Wilson-Rae[2]
[1]University of Vienna, Vienna, Austria
[2]Technical University Munich, Munich, Germany

Micro-and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. We report a significant advancement towards understanding and controlling support-induced losses through the demonstration of an efficient numerical ...