Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Ultrasensitive Mass Sensing Through Coupled Microelectromechanical Resonator Arrays

A. R. Hambarde [1], R. M. Patrikar [1],
[1] Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India

Microelectromechanical coupled resonating arrays are being used for detecting biological and chemical analytes through mass sensing. Such arrays of perfectly identical resonators can be considered as periodic, ordered, non-localized systems. The change in the eigen parameters of the system upon mass or stiffness perturbation is a measure of the amount of perturbation. An attempt has been made in ...

Phase Decomposition for Loudspeaker Analysis

R. Christensen [1],
[1] GN ReSound A/S, Copenhagen, Denmark

The vibration of an electrodynamic loudspeaker driver causes a resulting sound pressure. For simple pistonic vibration, there is a simple relationship between the vibration and the sound pressure. For complex vibration patterns, however, different parts of the vibrating surface contribute differently to the sound pressure, depending on the position in which the sound pressure is evaluated. A ...

Modeling of Near-Field Ultrasonic Levitation: Resolving Viscous and Acoustic Effects

I .F. Melikhov [1], A. S. Amosov [1], S. A. Chivilikhin [2],
[1] Corning Scientific Center, Saint Petersburg, Russia
[2] ITMO University, Saint Petersburg, Russia

Ultrasonic levitation is a novel technology for contactless handing of various objects. It is already used in various manufacturing processes where it is important to keep untouched surface. In this paper we introduce a model of so-called near-field ultrasonic levitation which allows flying heights of the hundred-micron order. Our model computes air flow in the gap between a vibration source and ...

Advanced Topics in Acoustics Simulation

M. J. Herring Jensen [1]
[1] COMSOL A/S, Lyngby, Denmark

In this session, we will discuss and showcase a few examples of advanced acoustics applications. In this context, “advanced” means problems that cannot simply be modeled “out-of-the-box,” but require the flexibility and strengths of COMSOL Multiphysics® software. Topics include: • Coupling of several space dimensions • Optimization • Equation-based modeling • Advanced boundary ...

Piezoelectric Surface Acoustic Wave (SAW) Device with Simulated Poling Condition

R. Xu [1], M. Guizzetti [1], K. Astafiev [1], E. Ringgaard [1], T. Zawada [1],
[1] Meggitt A/S, Kvistgaard, Denmark

FEM (Finite Element Method) modelling software such as COMSOL Multiphysics® can be a powerful tool for modelling the behavior and response of piezoelectric materials and devices [1]. Devices based on piezoelectric crystals are particularly well suited, because the polarization magnitude in crystals is predetermined and its orientation is defined by how it was cut with respect to the lattice ...

用于中高端扬声器设计的完整仿真分析方法

陆晓 [1], 温周斌 [1], 徐楚林 [1], 岳磊 [1],
[1] 浙江中科电声研发中心,嘉善,中国

扬声器仿真分析方法越来越受到电声企业关注,已成为扬声器设计的重要手段和发展方向。要想设计中高端扬声器,就必须建立一套完整的仿真分析方法。 本文介绍一种基于 COMSOL Multiphysics® 的用于中高端扬声器设计的仿真分析方法。该方法不仅包含了扬声器磁路、振动系统(结构)和声场的耦合分析,还模拟了温度对磁性材料和振动部件材料特性的影响。由于扬声器振动部件材料的粘弹性等特性,因此必须建立更为准确的材料模型。利用 COMSOL Multiphisics 软件丰富的第三方软件接口和二次开发功能,经数据后处理可得到声障板等条件下的声压级、谐波失真和互调失真等。 采用本方法可有效指导中高端扬声器的仿真设计,准确预估扬声器的声压级、谐波失真和温度场等关键指标,对扬声器产品的理解和设计水平亦将达到新的高度。

Acoustic Emission Simulation for Online Impact Detection

C. Yang, M. A. Torres-Arredondo, and C.-P. Fritzen
Institute of Mechanics and Control Engineering
Mechatronics
University of Siegen
Siegen, Germany

Impact monitoring has been extensively studied by several researchers and it has been shown that damage extent can be correlated with the impact magnitude. In order to make the process cost-effective, simulation of the impact has been performed, to get the big training data set from modeling. The structural dynamic responses captured by PZT transducers due to impact events are recorded from ...

Design of a Self-Recharging Untethered Mobile Inspection Tool inside a Pipeline

W. Chalgham [1], A. C. Seibi [1],
[1] University of Louisiana at Lafayette, Lafayette, LA, USA

Pipeline inspection tools present some limitations related to power supply which require recharging after each operation. Using batteries or tethered tools make the duration to inspect any pipeline very limited and time consuming. This paper aims at designing a spherical self-recharging untethered mobile ball flowing inside a given pipeline using the COMSOL Multiphysics® software. The ball will ...

On the Numerical Modeling of Elastic Resonant Acoustic Scatterers

V. Romero-García[1], A. Krynkin[2], J.V. Sánchez-Pérez[1], S. Castiñeira-Ibáñez[3], and L.M. Garcia-Raffi[4]
[1]Centro de Tecnologías Físicas Acústica, Universidad Politécnica de Valencia, Valencia, Spain
[2]School of Computing, Science & Engineering, University of Salford, Salford, United Kingdom
[3]Depto. Física Aplicada, Universidad Politécnica de Valencia, Valencia, Spain
[4]Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain

The elastic and geometrical properties of Low Density Polyethylene (LDPE) foam are used in this paper to improve the attenuation properties of periodic arrangements of acoustic scatterers known as Sonic Crystals (SCs). A specific recycled profile of LDPE foam is used as elastic-acoustic scatterer. The acoustic spectrum of the single scatterer shows two attenuation peaks in the low frequency ...

Designing a Smart Skin with Fractal Geometry

S. Ni, C. Yang Koh, S. Kooi, and E. Thomas
Institute for Soldier Nanotechnologies
Dept. of Materials Science and Eng.
MIT
Cambridge, MA

Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials having fractal geometry. COMSOL is used to investigate vector elastic and ...