Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Study into the Acoustic and Vibrational Effects of Carbon Fiber Reinforced Plastic as a Sole Manufacturing Material for Acoustic Guitars

J. O'Donnell[1], G. McRobbie[1]
[1]University of the West of Scotland, Paisley, Scotland, United Kingdom

This study will research a modern design of acoustic guitar by analysis of the vibrational modes. The guitar that will undergo testing has been provided by Emerald Guitars and is solely constructed using Carbon Fiber Reinforced Plastic (CFRP). With the use of COMSOL Multiphysics© the soundboard of the guitar will be simulated and analysis will be carried out to determine the first 10 ...

Compression Driver Simulation Including Air Damping in Phase Plug

R.Christensen, and U. Skov
iCapture ApS
Gadstrup, Denmark

A compression driver is a certain type of electrodynamic loudspeaker which has a phase plug with slits in front of the diaphragm. The slits are narrow enough that the so-called viscothermal effects are of significant importance. In this paper a 2D axisymmetric finite element model of a commercial compression driver is established where the vibroacoustic behavior can be evaluated. The ...

Modelling the Wall Vibrations of Brass Wind Instruments

V. Chatziioannou, and W. Kausel
Institute of Music Acoustics
University of Music and Performing Arts
Vienna, Austria

The vibration of the walls of brass wind instruments has been a subject of study in the field of musical acoustics throughout the last decades. The amplitude of such vibrations, stimulated by the oscillating air pressure inside the instrument bore, is very small compared to the dimensions of the instrument. However, it has been recently shown that at the flaring regions of the bell of brass ...

Finite Element Model for Simulating the Inspection of Steel Tubes Using Electromagnetic Acoustic Transducers - new

P. Sun[1], X. Ding[1], X. Wu[1], M. Cong[1]
[1]School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, China

Steel tubes are widely used in industries. In order to ensure the safety and reliability of industrial processes, electromagnetic acoustic transducers (EMATs) based guided wave technology has been developed for inspecting stainless steel tubes regularly. Theoretical models and finite element modes have been built to investigate the EMAT technology. However, existing models mainly focused on ...

Acoustic Emission Simulation for Online Impact Detection

C. Yang, M. A. Torres-Arredondo, and C.-P. Fritzen
Institute of Mechanics and Control Engineering
University of Siegen
Siegen, Germany

Impact monitoring has been extensively studied by several researchers and it has been shown that damage extent can be correlated with the impact magnitude. In order to make the process cost-effective, simulation of the impact has been performed, to get the big training data set from modeling. The structural dynamic responses captured by PZT transducers due to impact events are recorded from ...

Numerical Modelling of Wave Propagation in Particulate Composites

P. S. K. Mylavarapu, and S. Boddapati
Defence Metallurgical Research Laboratory

Syntactic foams are hollow particle filled composites that have recently emerged as attractive materials for use in advanced structural applications in aerospace and defence industry. Ultrasonic characterization of these foams is performed extensively in order to understand the effect of porosity and particle size on the ultrasonic properties such as longitudinal velocity and attenuation. ...

Mean Flow Augmented Acoustics in Rocket Systems - new

S. Fischbach[1]
[1]NASA Marshall Space Flight Center / Jacobs ESSSA Group, Huntsville, AL, USA

Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode-shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and ...

Advanced Topics in Acoustics Simulation

M. J. Herring Jensen [1]
[1] COMSOL A/S, Lyngby, Denmark

In this session, we will discuss and showcase a few examples of advanced acoustics applications. In this context, “advanced” means problems that cannot simply be modeled “out-of-the-box,” but require the flexibility and strengths of COMSOL Multiphysics® software. Topics include: • Coupling of several space dimensions • Optimization • Equation-based modeling • Advanced boundary ...

Simulation of the Flow of an Autonomous Spherical Ball inside a Pipeline

W. Chalgham [1], A. C. Seibi [1], M. Mokhtari [1],
[1] University of Louisiana at Lafayette, Lafayette, LA, USA

One of the limitations of pipelines performance and structural integrity assessment is the continuous inspection of possible leaks due to corrosion or other types of failure mechanisms. Efforts to develop new technologies started several decades ago where different inspection techniques were used to enhance pipelines structural integrity. However, although available technologies present some ...

Acoustic Scattering through a Circular Orifice in Low Mach Number Flow

S. Sack [1], M. Abom [1]
[1] KTH, the Royal Institute of Technology, Stockholm, Sweden

The acoustic scattering through a circular orifice plate in a duct with low Mach number flow (M=0.1) is computed using the Linearized Navier-Stokes physics interface of COMSOL Multiphysics®. The work by Kierkegaard et al. is extended to account for higher order acoustic modes, i.e., behind the cut-on frequency of the first radial duct mode. Orifice flows tend to create a sharp separation zone at ...