Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Horn Driver Response by Direct Combination of CD Frequency Response and Horn FEA

D. Cinanni [1],
[1] Ciare S.r.l., Italy

Today a horn driver developing is still time and cost consuming. In addition compression driver behavior depends by the horn profile. In this study is proposed a new technique to model a combination of an existing compression driver and a virtual horn, in order to predict the horn driver acoustic behavior. This procedure comprises compression driver measurement on a Plane Wave Tube and horn ...

Modeling Scattering from Rough Poroelastic Surfaces Using COMSOL Multiphysics®

A. Bonomo[1], M. Isakson[1]
[1]Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

COMSOL Multiphysics® is used to address the problem of acoustic scattering from one-dimensional rough poroelastic surfaces. The poroelastic sediment is modeled following the Biot-Stoll formulation. The rough surfaces are generated using a modified power law spectrum. Both monostatic and bistatic scattering strengths are calculated. These results are compared with more conventional scattering ...

Multiphysics Modeling of Sound Absorbing Fibrous Materials

T. G. Zielinski [1]
[1] Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Many of fibrous materials are very good sound absorbers, because the acoustic waves, which propagate in air and penetrate a fibrous layer, interact with the fibers so that the wave energy is dissipated. The dissipation is related to some viscous and thermal effects occurring on the micro-scale level. On the macroscopic level, a fibrous medium can be treated as an effective inviscid fluid, ...

Modeling the Effect of a Crack on the Flow-Induced Vibration of Supported Pipes

J. H. Lee [1], S. M. Al-Said [2],
[1] American University of Sharjah, Sharjah, United Arab Emirates
[2] Jordan University of Science and Technology, Irbid, Jordan

In this paper, the effect of a crack to the flow-induced vibration characteristics of supported pipes is investigated based on vibration method. In order to estimate the crack location and depth in the pipe, we need to utilize the variation of the difference between the natural frequencies of the pipe conveying fluid with and without crack. The pipe is fluid loaded via interaction with the ...

Finite Element Simulation of a Surface Acoustic Wave Driven Linear Motor

B. Behera [1], H. B. Nemade [1], S. Trivedi [1],
[1] Indian Institute of Technology Guwahati, Guwahati, Assam, India

The paper presents finite element simulation of a surface acoustic wave (SAW) linear motor. The function of SAW linear motor depends on the principle of friction drive provided by SAW propagating on a piezoelectric substrate. The SAW motor comprises of a slider driven by Rayleigh wave generated on a piezoelectric stator using an interdigital transducer (IDT) fabricated on surface of the stator. ...

A Multiphysics Approach to the Design of Loudspeaker Drivers

R. Magalotti [1]
[1] B&C Speakers, Bagno a Ripoli, Italy

Loudspeaker drivers are energy transducers: their main goal is to efficiently convert electrical energy to acoustic energy (sound), through the movement of mechanical parts. As such, they are prime candidates for the application of multiphysics methods and tools. The talk will outline the growing set of tools that COMSOL Multiphysics® software puts in the hands of the loudspeaker designer; ...

Modeling the Sound Radiation by Loudspeaker Cabinets - new

M. Cobianchi[1], M. Rousseau[1]
[1] B&W Group Ltd, Steyning, UK

While musical instruments often rely on a body which resonates on purposefully to amplify the vibration produced by a string or a membrane, such as in a violin or a guitar, loudspeaker cabinets should not contribute at all to the total sound radiation, but aim instead to be a perfectly rigid box which encloses the drive units in charge to transform the electrical signal at their terminal into ...

Dynamic Structural Modelling of Wind Turbines Using COMSOL Multiphysics

C. Van der Woude, and S. Narasimhan
University of Waterloo, Waterloo, ON, Canada

This paper presents a study of a wind turbine subjected to wind and seismic loading, carried out using COMSOL Multiphysics. The dynamic properties and response of wind turbine structures are of interest, as recent developments in wind energy have led to the design and construction of increasingly large and flexible turbine structures. A typical turbine structure model was created in COMSOL and ...

An Improved Loudspeaker Frequency Response by Using a Structure of Rigid Absorptive Panel in a Vented Cabinet - new

R. Balistreri[1]
[1]Community Light & Sound Inc., Chester, PA, USA

When placing a loudspeaker in a cabinet, standing waves inside the cabinet affect the frequency response with ripples. This peaks and dips due to pressure cancellation inside the cabinet have an effect on the diaphragm and generating sound out from the vents. If it was in a condition of total absorption of the sound waves at the back of the diaphragm, the transducer would otherwise have a much ...

Modeling Acoustic Interface Wave Dispersion Using COMSOL Multiphysics®

B. Goldsberry[1], M. Isakson[1]
[1]Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

Measuring geoacoustic parameters of underwater sediments is important for accurate modeling of underwater acoustic propagation. While the density and compressional wave speeds can be directly measured in sediments, shear wave speeds are difficult to measure because they are highly attenuated. However, shear wave speeds can be indirectly determined through measurement of Scholte interface wave ...