Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

PA Loudspeaker System Design Using Multiphysics Simulation

R. Balistreri [1],
[1] QSC Audio Products, LLC., Costa Mesa, CA, USA

This paper utilizes lumped circuits equivalent and pressure acoustics to simulate the behavior of a PA loudspeaker in order to improve its design.

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...

Prediction and Control of Motorcycle Engine Noise under Combustion Load

N. Bhatia [1], U. Mohite [1],
[1] Mahindra 2 Wheelers, Pune, India

Engine is a major source of noise in motorcycle. Acoustic analysis of a single cylinder motorcycle engine under combustion load is presented. Engine surface acceleration obtained from vibration analysis is used as input for acoustic analysis. Process automation is carried out using java script to interpolate nodal acceleration data on the engine skin and to solve the acoustic model for each ...

Ultrasound Piezo-Disk Transducer Model For Material Parameter Optimization

L. Spicci, and M. Cati
Esaote SpA, Florence, Italy

The technology involved in high performance ultrasound imaging probes needs a reliable model to help in new projects development and performance simulations. To achieve a useful model, it is necessary to use correct values for all material parameters involved in the electro-acoustical performances of the piezoelectric material, but unfortunately some of these parameters are known only with high ...

Prediction of Noise Generated by Electromagnetic Forces in Induction Motors - new

M. K. Nguyen[1], R. Haettel[2], A. Daneryd[2]
[1]KTH, Stockholm, Sweden
[2]ABB Corporate Research,Västerås, Sweden

Induction motors, as any other industrial products, have to comply with various requirements on noise levels. Therefore, it is essential to use an appropriate prediction tool to verify and optimize the design of an induction motor with respect to the acoustic performances. The paper will focus on the prediction of the magnetic noise generated and radiated by a specific motor. The challenge is ...

MEMS Electrostatic Acoustic Pixel

A. Arevalo [1], D. Conchouso [1], D. Castro [1], I. G. Foulds [2],
[1] Computer, Electrical, & Mathematical Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2] The University of British Columbia, School of Engineering, Vancouver, BC, Canada

The growth of the electronics industry demand better components for the electronic systems. Such components need to be improve to keep up with the evolution of the digital era. The loudspeaker design has not been changed for almost a century [1-5]. The acoustic transducer is the last analogue component needed for a true digital audio system. We want to validate the feasibility of using an ...

Design and Simulation of Underwater Acoustic MEMS sensor

S. Prabhu [1], Nagbhushan [1],
[1] Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

Silicon based MEMS have wide applications in under water sensors. This work aims one such applications, hydrophone. Hydrophone detects the pressure variations of acoustic signals and noise in the water and produces an output voltage proportional to the pressure. Here the attempt is made to design and simulate MEMS based underwater acoustic sensor whose working is based on piezoresistive physics. ...

Modeling and Testing of Carbon-Fiber Doubly-Resonant Underwater Acoustic Transducer

A. Morozov[1]
[1]Teledyne Technologies Inc., Falmouth, MA, USA

This paper describes the COMSOL Multiphysics® simulation and the test of a low-frequency (500Hz) sound source for long-range acoustic communications. This design uses innovative carbon-fiber composite materials.To meet the demand for the frequency range the doubly resonant organ pipe resonator was suggested. A multi-resonant system usually needs a precise, complicated adjustment of its ...

An Improved Loudspeaker Frequency Response by Using a Structure of Rigid Absorptive Panel in a Vented Cabinet - new

R. Balistreri[1]
[1]Community Light & Sound Inc., Chester, PA, USA

When placing a loudspeaker in a cabinet, standing waves inside the cabinet affect the frequency response with ripples. This peaks and dips due to pressure cancellation inside the cabinet have an effect on the diaphragm and generating sound out from the vents. If it was in a condition of total absorption of the sound waves at the back of the diaphragm, the transducer would otherwise have a much ...

MEMS-based Handy Fuel Adulteration Detection Device

Anumeha Dwivedi[1], Dr. R. Dey[2]
[1]BITS Pilani K.K. Birla Goa Campus, Goa, India
[2]Associate Professor, BITS Pilani K.K. Birla Goa Campus, Goa, India

Adulteration of automobile fuels, especially petrol and diesel is a rampant malpractice in India. With the rising prices of fuel and the subsidy on kerosene, getting away with even 10-15% adulteration is immensely profitable.To check adulteration effectively, it is necessary to monitor the fuel quality at the distribution point itself. The equipment for this purpose should be handy and the ...