Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL News Magazine 2017

Modeling the Influence of Differential Aeration in Underground Corrosion

R. M. Azoor [1], R. N. Deo [1], N. Birbilis [2], J. K. Kodikara [1],
[1] Department of Civil Engineering, Monash University, Clayton, VIC, Australia
[2] Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia

A finite element model for underground corrosion is presented. The model is capable of predicting regions experiencing high levels of corrosion due to differential aeration and helps identify "corrosion hotspots" where physical examination of the buried asset is not feasible. Verification of the model is done through experimental results and empirical relationships on underground corrosion ...

Constructing COMSOL Models of a Bacteriological Fuel Cell

R. Coker[1], J. Mansell[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

We have started constructing preliminary design COMSOL models of a bacteriologically driven \'fuel cell\' that is intended to process waste products, such as carbon dioxide and brine, from a crewed vehicle. At this early stage, this complex system is reduced to two electrodes separated by a membrane. The electrolyte is a brine appropriate for growing methanogenic bateria, though none are ...

Modeling the chloride-induced corrosion initiation of steel rebar in concrete

P. Ghods[1], K. Karadakis[1], O. B. Isgor[1], and G. McRae[1]
[1]Carleton University, Ottawa, Ontario, Canada

Corrosion of rebar in concrete is one of the most prominent durability problems in reinforced concrete, especially where de-icing or seawater salts come into contact with the structures. Previous electrochemical and microscopic investigations have shown that local crevices between the mill scale and the underlying steel surface accelerate the corrosion initiation of rebar in concrete. Steel ...

Tertiary Current Distributions on the Wafer in a Plating Cell

L. Tong[1]
[1]Keisoku Engineering System Co., Tokyo, Japan

The tertiary current distributions on the wafer in a plating cell are studied in this work. An acid copper sulfate electrolyte composed of CuSO4/5H2O of 2.4 g/L and H2SO4 of 90 g/L is taken into account for copper deposition on the wafer. The solution of shear-plate agitating fluid dynamics is coupled into the calculation of tertiary current distributions. The obtained distributions of tertiary ...

Alternative Designs to Harness Natural Convection in Flow Batteries

A. Ansari [1], S. Kumar [1],
[1] Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

The earlier work in our group has established that natural convection plays a dominant role in SLRFB. We used it to run a battery in which interestingly, the contents are agitated for brief spells when no current flows through it. The present work focuses on electrode configurations that harness the role of natural convection. In one such configuration, electrodes are positioned away from cell ...

Application of COMSOL Multiphysics in the Simulation of Magnesium Refining and Production

X. Guan[1], E. Gratz[1], U. Pal[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA

Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt (flux) in order to improve the transport of magnesium vapor out of the flux and achieve chemical homogeneity in ...

Study on the Thermal Behaviors of LFP Aluminum-laminated Battery with Different Tab Configurations

M. Jia [1], S. Du [1],
[1] School of Metallurgy and Environment, Central South University, Changsha 410083, PR China

Abstract: A 3.2V/10Ah LFP aluminum-laminated batteries are chosen as the target of the present study. A three-dimensional thermal simulation model is established based on finite element theory and proceeding from the internal heat generation of the battery[13]. The study illustrates a three-dimensional relationship among the total internal heat generation rate of the battery, the discharge rate ...

Hybrid Multiscale Modeling of Corrosion Nanoinhibitors Transport

C. Trenado[1], D. Strauss[1,2], and M. Wittmar[2]
[1]Computational Diagnostics & Biocybernetics Unit, Saarland University Hospital, Homburg, Germany
[2]Leibniz-Institute for New Materials, Saarbrücken, Germany

Progress in coating technology has allowed for the development of free-chromate corrosion inhibitors, which are able to smartly migrate when required. In order to support the coating design, we propose a hybrid mathematical model to study the inhibitor's release by taking into account the thermodynamics and kinetics involved in the corrosion process. The proposed model is ...

3D Model for the Dynamic Simulation of SOFC Cathodes

A. Häffelin, J. Joos, M. Ender, A. Weber, and E. Ivers-Tiffée
Institut für Werkstoffe der Elektrotechnik (IWE)
Karlsruher Institut für Technologie (KIT)
Karlsruhe, Germany

A fuel cell is an electrochemical system, which converts chemical energy into electricity by a controlled reaction of hydrogen and oxygen. The performance of the electrode is likewise determined by its material and the microstructure. The simulations were performed directly on reconstructions of real electrodes, obtained from focused ion beam (FIB) tomography. A finite element method (FEM) ...

Optimization of an Electrochemistry System

D. Mi [1],
[1] KEISOKU Engineering System Co., Ltd., Chiyoda-ku, Tokyo, Japan

Optimization of a typical electrochemical system with insulating shields is considered in this work, which objective is to reduce the current peak due to singularity and smooth the current density distribution along electrode surface. Moving mesh method was adopted to allow change in design variables, i.e., position and width of the insulating shields. It was found that combining optimization ...