Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of the Impact of Blood Vessels Flow on the Temperature Distribution During Focused Ultrasound Exposure

K.C.P. Li, B.E. O'Neill, and E. Sassaroli
Methodist Hospital Research Institute, Houston, TX, USA

Focused ultrasound systems guided by magnetic resonance imaging (MRI) and thermometry have recently made possible the non-invasive thermal ablation of benign tumors such as uterine fibroids in clinical practice. Much more work is however required in order to make this technology available for the treatment of other forms of cancer. One of the major difficulties is associated with the presence of ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Design and Strain Analysis of Artificial Femoral Head and Stem

N. M. Sundaram[1], M. Sneha[1], A. Kandaswamy[1], R. Nithya[2]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India
[2]Dr. N.G.P. Institute of Technology, Coimbatore, Tamil Nadu, India

The majority of elderly patients are subjected to hip bone replacement due to dislocation of bone, mechanical failure and infection. The life time of the implant varies from patient to patient depending on their daily physical activity. Once the implant fails, re-operation of hip bone replacement is performed. In United States, there are approximately 18 revision hip replacements performed for ...

Effect of Permeability Diminution in Nutrient Diffusion in Intervertebral Disc

M. A. Chetoui [1], O. Boiron [2], A. Dogui [3], V. Deplano [2],
[1] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir; Ecole centrale Marseille, Marseille, France
[2] Aix-Marseille Université, CNRS, Ecole Centrale, Marseille, France
[3] Université de Monastir, Ecole Nationale D'ingénieurs de Monastir, Marseille, France

Intervertebral discs (IVD) are fibro-cartilages situated between vertebrae providing their joint flexibility. They play a major role in the transmission and absorption of load through the spine. The disc can undergo progressive structural and quantitative changes in its composition and morphology related to mechanical load applied to the spine which can lead to disc degeneration; this disease is ...

Bending of a Stented Atherosclerotic Artery

H.C. Wong[1], K.N. Cho[1], and W.C. Tang[1]

[1]Department of Biomedical Engineering, University of California, Irvine, California, USA

Atherosclerosis causes the deposition of plaque on the inner walls of arteries, which leads to restricted blood flow. Using the balloon angioplasty procedure, stents can be inserted and expanded in the atherosclerotic artery. We used COMSOL Multiphysics Structural Mechanics, Solid Stress-Strain module to perform static, large deformation analyses. Our results show that lower stent stresses were ...

Understanding the Role of Nanomaterials in DNA Biosensors Through Finite Element Analysis

J. C. Kumaradas[1], A. Zhang[2], Y. D. Davletshin[1]
[1]Ryerson University, Toronto, ON, Canada
[2]University of Waterloo, Waterloo, ON, Canada

Tremendous progress is being made in the integration of nanoparticles into micro-analytical systems for biosensing. These materials are shown to enhance the analyte capture capability of biosensing platforms. We have implemented a computational model that considers the sensor’s geometry, size, analyte concentration and type to predict the number of nucleic acid molecules captured by ...

Simulations of Microelectrode and Neuron Interfaces Enable Long-Term and High Fidelity Recordings

P. Wijdenes [1], H. Ali [2], N. Syed [3], C. Dalton [2],
[1] Centre for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada
[2] Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
[3] Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada

Our inability to record single cell activity with high resolution over a long period of time precludes fundamental understanding of nervous system functions, both under normal and pathological conditions. While the fabrication of current micro- and nano-electrodes has advanced our capabilities to perform long-term recordings, this has been at the expense of signal resolution due to low sealing ...

Multiphysics Modeling of a Grain Storage Chamber - new

P. Guha[1], P. Sharma[1], V. Malhotra[1], S. Mishra[1]
[1]CSIR - Central Scientific Instruments Organisation, Chandigarh, India

Proper storage of grains depends on minimizing attacks of insects, fungi, mites, etc. Development of such pests can be controlled by controlling the temperature of the storage chamber. Hence, before designing grain storage chambers, mathematical modeling and numerical simulations should be performed to predict the temperature distributions. Changes in storage temperature may occur due to several ...

Simulation and Experimental Analysis of Drug Release Rates from Magnetic Nanocomposite Spheres - new

L. Saeeednia[1], H. Mehraein[2], F. Abedin[1], K. Cluff[2], R. Asmatulu[1]
[1]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
[2]Department of Bioengineering, Wichita State University, Wichita, KS, USA

Targeted drug delivery systems have been wildly studied in cancer therapy due to the toxicity of most of chemotherapeutic drugs. Nanoparticles can be attached to the small molecules of the drugs and serve as drug carriers to deliver the drug molecules into the area of interest. In this research, polymeric microspheres containing biodegradable poly(D, L-lactide-co-glycolide) (PLGA), magnetic ...

Evaluation of Binary Mixture Models for 3D Printed Biosensors

J. Persad [1], S. Rocke [1], D. Ringis [1], A. Abdool [1],
[1] Department of Electrical and Computer Engineering, University of the West Indies, St. Augustine, Trinidad and Tobago

3D printing as applied to the area of electronics manufacture covers a broad range of traditional printing technologies [1]. The attraction in 3D printing lies in its potential to disrupt the traditional photolithographic/subtractive manufacturing line with simpler additive processes. Additive electronics manufacturing which utilises 3D printing techniques allow for fewer production steps and ...