Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Numerical Prediction of Particle Dynamics Within a Cytometer. Application to Counting and Sizing by Impendance Measurement

D. Isèbe[1]
[1]HORIBA Medical, Montpellier, France

This paper describes how to numerically tackle the problem of counting and sizing particles by impedance measurement in an orifice–electrode system. The model simulate the particle dynamics submitted to strong hydrodynamic stresses through a microorifice and compute the voltage pulses generated by the modification of the inner dielectric medium. This FSI problem is solved on a moving mesh by ...

Singlet Oxygen Modeling for PDT Incorporating Local Vascular Oxygen Diffusion

T. C. Zhu[1], B. Liu[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent that kills cells during photodynamic therapy (PDT). Based on a previously-developed model, the distance-dependent reacted 1O2 can be numerically calculated using finite-element method. We improved the model to include microscopic kinetic equations of oxygen diffusion from uniformly distributed blood vessels to the adjacent tissue. The blood ...

Multiphysics Modeling of a Grain Storage Chamber - new

P. Guha[1], P. Sharma[1], V. Malhotra[1], S. Mishra[1]
[1]CSIR - Central Scientific Instruments Organisation, Chandigarh, India

Proper storage of grains depends on minimizing attacks of insects, fungi, mites, etc. Development of such pests can be controlled by controlling the temperature of the storage chamber. Hence, before designing grain storage chambers, mathematical modeling and numerical simulations should be performed to predict the temperature distributions. Changes in storage temperature may occur due to several ...

3D-Simulation of Action Potential Propagation in a Squid Giant Axon

R. Appali[1], S. Petersen[1], J. Gimsa[2], and U. Rienen[1]
[1] Institute of General Electrical Engineering, Chair of Electromagnetic Field Theory, University of Rostock, Germany
[2] Institute of Biology, Chair of Biophysics, University of Rostock, Germany

Study of neurons plays a key role in the fields of basic and medical research aiming at the development of electrically active implants. The Fitzhugh-Nagumo equations are used to model and simulate the spike generation and propagation in a squid giant axon using COMSOL Multiphysics® 3.5a Software. It is shown that the Fitzhugh-Nagumo equations allow for a geometrical explanation of ...

Analyzing Drug Delivery and Osteoblast Growth on a Porous Scaffold in a Perfusion Bioreactor

A. Sun, and S. Murray
Dept. of Biomedical Engineering
UCLA, Los Angeles, CA

Implantable Collagen sponges are used in Spinal Surgery as Drug Delivery Scaffolds. An optimal concentration of growth factor that strikes a balance between bone growth and adverse diffusion effects is difficult to find. The porous sponge also serves as a scaffold for Osteoblast growth, and fluid shear has been shown to mediate biological effects on that cell type. We use COMSOL Multiphysics ...

Computational Modeling to Study the Treatment of Cardiac Arrhythmias using Radiofrequency Ablation

A. González-Suárez[1], M. Trujillo[2], J. Koruth[3], A. D'Avila[3], E. Berjano[1]
[1]Biomedical Synergy, Electronic Engineering Department,Universitat Politècnica de Valencia, Valencia, Spain
[2]Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de Valencia, Valencia, Spain
[3]Helmsley Cardiac Electrophysiology Center, Mt SinaiMedicalCenter and School of Medicine, New York, NY, USA

Previous studies proposed using bipolar radiofrequency ablation across two catheters placed on opposing surfaces of the ventricular wall to create transmural lesions. 2D and 3D models were built and solved with COMSOL Multiphysics software. With these models, it was possible to study the temperature distribution and lesion geometry (Figure), to compare the potential of two ways of applying ...

Modeling Inertial Focusing in Straight and Curved Microfluidic Channels

J. Martel[1], N. Elabbasi[2], D. Quinn[2], J. Bergstrom[2], M. Toner[1]
[1]BioMEMS Resource Center, Massachusetts General Hospital, Boston, MA, USA
[2]Veryst Engineering, Needham, MA, USA

Inertial focusing is a promising microfluidic technique for separating and concentrating cells of interest, processes routinely utilized in many medical procedures. This phenomenon is characterized by suspended particles in a flow spontaneously migrating across streamlines to equilibrium positions within a channel cross-section. We developed CFD models in COMSOL Multiphysics® to predict the ...

Modeling of the Singlet Oxygen Distribution in Photofrin-Photodynamic Therapy of the Plural Cavity

R. Penjweini [1], T. C. Zhu [1], M. M. Kim [1],
[1] Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Photofrin-mediated photodynamic therapy (PDT) is used after surgical resection at the University of Pennsylvania to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rate. When Photofrin is exposed to laser light at 630 nm in well-oxygenated tissue, it produces reacted singlet oxygen ([1O2]rx) that kills cancer cells. As [1O2]rx is imperative to PDT ...

Rapid Prototyping of Biosensing Surface Plasmon Resonance Devices using COMSOL & Matlab software

J.J. Dubowski[1], and D.Carrier[1]
[1]Department of Electrical and Computer Engineering, Université de Sherbrooke, Quebec, Canada

We present a Finite Element Method simulation procedure that allows rapid development of prototype devices comprising novel self-referenced interference SPR (surface plasmon resonance) biosensing microstructures. The procedure takes advantage of  COMSOL Multiphysics and MATLAB software and their bi-directional link. The simulation is made using COMSOL RF Module, 2D harmonic propagation ...

Simulation and Design of a Microfluidic Respirometer for Semi-Continuous Amperometric Short Time Biochemical Oxygen Demand (BODST) Analysis

F.J. del Campo[1], A. Torrents[1], J. Mas[2], F.X. Muñoz[1]
[1]Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
[2]Departement de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Introduction: This work presents the design of a novel flow cell based miniaturized electrochemical respirometer to monitor organic content in water samples semi-continuously, in contrast to current Biochemical Oxygen Demand, BOD, methods. Simulation techniques has been used to parameterize and optimize aspects such as height and length of the channels, materials and thickness, flow and oxygen ...