Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Solid Food Pasteurization by means of Ohmic Heating: Influence of Process Parameters

M. Zell[1], D. Cronin[1], D. Morgan[1], F. Marra[2], and J. Lyng[1]
[1]School of Agriculture, Food Science and Veterinary Medicine, Agriculture and Food Science Centre, College of Life Sciences, UCD Dublin, Ireland
[2]Dipartimento di Ingegneria Chimica e Alimentare, Università degli Studi di Salerno, Italy

Pasteurization of solid food undergoing ohmic heating has been analyzed using COMSOL Multiphysics on the basis of a previously validated multiphysics model. The simulation of pasteurization by ohmic heating involves simultaneous solution electrical potential within the food, heat transfer, and the kinetics transport of death of microorganisms. In the model, thermo-physical and electrical ...

Large Scale Invasion Of New Species And Of Genetic Information

O. Richter, F. Suhling, and S. Moenickes
Technische Universität Braunschweig, Germany

The spatial dynamics of the invasion of new species and genetic dispersal is studied under the presumption of rising temperature by using a coherent approach of coupled partial differential equations of the reaction diffusion type. The nonlinear reaction terms model the population dynamics, genetic exchange and competition. Temperature reaction norms of reproduction rates are conferred by a two ...

Computational Modeling to Study the Treatment of Cardiac Arrhythmias using Radiofrequency Ablation

A. González-Suárez[1], M. Trujillo[2], J. Koruth[3], A. D'Avila[3], E. Berjano[1]
[1]Biomedical Synergy, Electronic Engineering Department,Universitat Politècnica de Valencia, Valencia, Spain
[2]Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de Valencia, Valencia, Spain
[3]Helmsley Cardiac Electrophysiology Center, Mt SinaiMedicalCenter and School of Medicine, New York, NY, USA

Previous studies proposed using bipolar radiofrequency ablation across two catheters placed on opposing surfaces of the ventricular wall to create transmural lesions. 2D and 3D models were built and solved with COMSOL Multiphysics software. With these models, it was possible to study the temperature distribution and lesion geometry (Figure), to compare the potential of two ways of applying ...

Computationally Assisted Design and Experimental Validation of a Novel ‘Flow-Focussed’ Microfluidics Chip for Generating Monodisperse Microbubbles

M. Conneely[1], V. Hegde[2], H. Rolfsnes[1], A. Mason[2], D. McLean[1], C. Main[1], F.J.D. Smith[2], W.H.I. McLean[2], P.A. Campbell[1]
[1]Carnegie Physics Laboratory, University of Dundee, Dundee, Scotland, United Kingdom
[2]Division of Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom

Whilst initially developed as a diagnostic aid to improve echogenicity in ultrasound imaging, gas-filled lipid microbubbles are now emerging as a next generation \'theranostic\' tool in the medical arena. Here, their therapeutic potential has now been realized through their unique capability to deliver molecular species such as drugs and genes by means of disrupting the cell membrane in response ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

Prediction of Time of Death Using a Heat Transport Model

J.L. Smart[1], and M. Kaliszan[2]
[1]University of Kentucky, Paducah, KY, USA
[2]Medical University of Gdansk, Gdansk, Poland

COMSOL Multiphysics® 4.0 was used to study conductive and convective heat transfer from the human eyeball to the surrounding air. Postmortem temperature decay curves were collected in eyeballs of numerous human corpses. Of course, these curves represent only a portion of the complete temperature decay curve, since the pathologist is able to start collecting temperature data only after some ...

Three-Dimensional Finite Element Modeling of Current Density in Maternal Transthoracic Defibrillation

A. Jeremic[1], J. Potts[2], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada
[2]McMaster University Hospital, Hamilton, ON, Canada

Although the cardiac arrest in pregnancy is a rare event it can have significant impact in terms of age of mother, mortality of unborn children and consequently long-term effect. One of the commonly used procedures in resuscitation is defibrillation. With recent advances in understanding pathophysiologies in pregnant women it became more obvious that previous studies should be extended to ...

Simulation of Radiation Dose Response in Phantom for CT

H. Chen-Mayer[1], R.E. Tosh[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The radiation dose produced by an x-ray CT scanner to the patient is conventionally referenced to measurements performed by an ionization chamber in a phantom. On a fundamental level, the radiation absorbed dose, J/kg, can be determined directly by the temperature rise in the absorbing material. We model the temperature response in a high density polyethylene (HDPE) phantom. Use of ...

Design and Strain Analysis of Artificial Femoral Head and Stem

N. M. Sundaram[1], M. Sneha[1], A. Kandaswamy[1], R. Nithya[2]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India
[2]Dr. N.G.P. Institute of Technology, Coimbatore, Tamil Nadu, India

The majority of elderly patients are subjected to hip bone replacement due to dislocation of bone, mechanical failure and infection. The life time of the implant varies from patient to patient depending on their daily physical activity. Once the implant fails, re-operation of hip bone replacement is performed. In United States, there are approximately 18 revision hip replacements performed for ...

Computational Design and Optimization of Bone Tissue Engineering Scaffold Topology

N. P. Uth [1], J. Mueller [2], B. Smucker [3], A. Yousefi [1],
[1] Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, USA
[2] Research Computing Support, Miami University, Oxford, OH, USA
[3] Department of Statistics, Miami University, Oxford, OH, USA

Introduction: Bone tissue has a limited ability for regeneration; critically sized defects cannot self-heal and require medical intervention. Bone tissue engineering (TE) circumvents this issue by growing replacement bone tissue from the patient’s own cells inside scaffolds. TE scaffolds are porous constructs that act as a support structure during bone regeneration and helps cells attach and ...