Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Plant Morphodynamics in Predefined COMSOL Multiphysics® Interface

S. Nikolaev[1], A. Trubuil[2]
[1]Institute of cytology and genetics SB RAS, Novosibirsk, Russia
[2]Institut National de la Recherche Agronomique, Jouy-en-Josas, France

We used a predefined COMSOL Multiphysics® interface to imitate biological growth and shape change (morphodynamics). We found a set of parameters that supply observed morphodynamics for an Arabidopsis embryo during its transition from globular to heart stage.

Simulating Organogenesis in COMSOL Multiphysics®: Comparison of Methods for Simulating Branching Morphogenesis

L. D. Wittwer [1], M. Peters [1], S. Aland [2], D. Iber [1],
[1] ETH Zürich, Zurich, Switzerland
[2] University of Applied Sciences, Dresden, Germany

Organogenesis, the genesis of organs during embryonic development, is an active research field involving biologists, mathematicians and computational researchers. Fundamental questions of the formation of shape and the control of growth are still not answered. We focus on the development of the embryonic mouse lung and kidney. From all proposed mechanisms, a Turing Pattern-based framework as ...

3D-Simulation of Action Potential Propagation in a Squid Giant Axon

R. Appali[1], S. Petersen[1], J. Gimsa[2], and U. Rienen[1]
[1] Institute of General Electrical Engineering, Chair of Electromagnetic Field Theory, University of Rostock, Germany
[2] Institute of Biology, Chair of Biophysics, University of Rostock, Germany

Study of neurons plays a key role in the fields of basic and medical research aiming at the development of electrically active implants. The Fitzhugh-Nagumo equations are used to model and simulate the spike generation and propagation in a squid giant axon using COMSOL Multiphysics® 3.5a Software. It is shown that the Fitzhugh-Nagumo equations allow for a geometrical explanation of ...

A Study on Nutrient Mass Transport through Porous Channeled Flat Sheet Membrane and Prediction of Maximum Scaffold Thickness for Viable Cell Culture (In-vitro) by 3D Modeling for Tissue Engineering Application

N. M. S. Bettahalli[1], B. J. Papenburg [2], D. S. Stamatialis [2], M. Wessling [3]
[1]University of Twente, Enschede, The Netherlands & BMS College of Engineering, Bangalore, India
[2]University of Twente, Enschede, The Netherlands
[3]RWTH Aachen University

Tissue engineering (TE) is a multidisciplinary field involving principles of engineering and life sciences to improve the health and quality of life by repairing, restoring, maintaining, or enhancing tissue and organ function using cells, scaffolds, and growth factors alone or in combination. There are several artificial tissues that are already being used which include fabricated skin, ...

Simulation of Cellular Traction Force Based Deflection of PDMS Micropillars - new

J. Wala[1], D. Maji[1], S. Dhara[1], S. Das[1]
[1]Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of adherent cells becomes a crucial factor in determining cell-cell and cell-substrate interaction, important for ...

Computational design and analysis of Microwave Tomography in Intracerebral Hemorrhage

Priyadarshini Natarajan [1], Rajkumar ElagiriRamalingam[1]
[1]Division of Biomedical Engineering, School of Biosciences and Technology, VIT University, Tamil Nadu, India

Intracerebral hemorrhage is a condition where a blood vessel in the brain ruptures and causes internal bleeding leading to hemorrhagic stroke. 800 in every 100,000 people suffer from stroke each year and it's one of the major causes of mortality worldwide. Diagnosis involves Neurological examination with MRI/CT scans which is costly and time consuming. Microwave Tomography (MWT) is proposed as a ...

How Finite Element Analysis Revolutionized a 100-Year Old Equation

K. Carlson [1], J. Arle [1], J. L. Shils [2], L. Mei [1],
[1] Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
[2] Rush Medical Center, Chicago, IL, USA

In 1901 Weiss proposed an equation predicting activation of nerve fibers by electrical stimulation, used in neuroscience and neuromodulation, which applies electric fields to modify nerve behavior in neurological disorders. Weiss’ equation is relative to geometry, electrode array, tissue conductivities, and waveform since it uses electrode amplitude. We replicated a leading calibrated nerve ...

Some Commonly Neglected Issues Which Affect DEP Applications

G. Zhang[1], V. Pandian[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

Dielectrophoresis (or DEP) has been exploited for various micro and nano fluidics applications like patterning, sorting and separation. However, there are several commonly neglected issues in quantifying DEP forces. Such negligence could potentially lead to wrong DEP force predictions and estimates, posing difficulties in correlating experimental observations with theories. Among the commonly ...

PDT Study Using a Model Incorporating Initial Oxygen Concentration and Blood Flow Increase

R. Penjweini[1], T. C. Zhu[1],
[1] Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Type II photodynamic therapy (PDT) is an experimental modality for cancer treatment based on the combined action of a photosensitizing drug (photosensitizer), a special wavelength of light and singlet oxygen (1O2) generation; the cell killing is caused by the reaction of cellular acceptors with 1O2. A mathematical model has been previously developed to incorporate the macroscopic ...

Development of a Microfluidic-Based Electrochemical Cell for Analyzing Bacterial Biofilms

I. Claydon [1], J. Turner [1], B. Sammakia [1],
[1] Binghamton University, Binghamton, NY, USA

The ubiquitous nature of biofilms has led to a growing need to be able to detect, control, and maintain or remove them. Therefore a robust testing platform that allows for multiple analytical techniques is required to better understand their multitude of properties. The development of the self-contained microfluidic-based electrochemical cell portion of a multifaceted analysis system is ...