Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Control-Release Anesthetics to Enable an Integrated Anesthetic-MSC Therapeutic

T. Maguire [1,2], M. Davis [1], I. Marrero-Berrios [1], C. Zhu [1], C. Gaughan [2], J. Weinberg [3], D. Manchikalapati [3], J. SchianodiCola [3], R. S. Schloss [1], J. Yarmush [3], M. Yarmush [1],
[1] Rutgers University, New Brunswick, NJ, USA
[2] BeauRidge Pharmaceuticals, New York, NY, USA
[3] Department of Anesthesiology, New York Methodist Hospital, Brooklyn, NY, USA

Introduction: While general anesthetics control pain via consciousness regulation, local anesthetics (LAs) act by decreasing sensation in the area of administration by blocking nerve transmission to pain centers. Perioperative intra-articular administration of LAs is a commonly employed procedure in orthopedic procedures to minimize patient surgical and post-surgical pain. LAs are also co ...

Model of an Interdigitated Electrodes System for Cell Counting Based on Impedance Spectroscopy

E. Bianchi[1][2], F. Bellati[1], E. Rollo[2], G. Dubini[1], C. Guiducci[2]
[1]Politecnico di Milano, LaBS, Laboratory of Biological Structure Mechanics, Milano, Italy
[2]Swiss Federal Institute of Technology (EPFL), Laboratory of Life Sciences Electronics - Swiss Up Chair, Lausanne, Switzerland

A model of a cell counter sensor based on Impedance Spectroscopy (IS) has been implemented in COMSOL Multiphysics. The cell counter is a silicon-based microdevice consisting in 3D electrodes placed in a wide microchannel: cells flow in the microchannel through the electrodes to be detected. The model allows to evaluate the functionality of the device depending on geometrical parameters and ...

Elucidating the Mechanism Governing the Cell Rotation Behavior Under DEP

G. Zhang[1], Y. Zhao[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In our experiments with manipulating cells with DEP, we noted that some cells are constantly spining. By hypothesing that the cell spining is caused by the non-circular shape of the cell body and the off-centered location of its nucleus and that the rotation direction depends on the relative location of nucleus with respect to the electrical field, we found that the observed cell rotation was ...

Finite Element Analysis of Defibrillation Current Density in Pregnant Women

A. Jeremic[1], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada

Although resuscitation during pregnancy is relatively uncommon and rarely causes death, they have a particularly large impact in terms of the mortality of the unborn child and long-term effects on families and society as whole. In this paper, we present a new 3D finite element model of a pregnant female torso which accounts for presence of amniotic liquid and calculate current density ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Solving Calcium Spatiotemporal Diffusion Using COMSOL Multiphysics® Software - new

L. Garber[1,2], G. S. B. Williams[2], W. J. Lederer[2]
[1]Fischell Department of Bioengineering, University of Maryland, Baltimore, MD, USA
[2]Center for Biomedical Engineering & Technology, University of Maryland, Baltimore, MD, USA

This project involves a simplified biological problem that was used to test the potential of COMSOL Multiphysics® software for cardiac myocyte spatial modeling. We made several assumptions to simplify the biological complexity and to highlight the geometrical structures (i.e., lack of sarcoplasmic reticulum, lack of contractile apparatus). We explored the role of the t-tubular network on ...

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

Two Dimensional Blood Shear Modeling in a Blood Cooling Catheter

R. Sikorski[1], B. Chapman[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

A CFD cardiac catheter model was developed to determine the potential for blood hemolysis during administration of local therapeutic hypothermia using a CoolGuide catheter. In vivo animal studies have shown that mild hypothermia may reduce reperfusion injury often associated with heart attack. The CoolGuide Catheter System (CCS) delivers rapid local cooling through a cardiac catheter, reducing ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic ...

Time-Domain Model of the Inner Ear to Study Nonlinear Responses

K. Gladine [1], J. Soons [1], J. Dirckx [1]
[1] University of Antwerp, Belgium

The ear doesn’t solely listen but it also speaks. Sounds formed in the inner ear which are measurable in the outer ear are called Otoacoustic emissions (OAEs). Some claim these are produced by the outer hair cells (OHCs), the amplifiers in the inner ear. Our hypothesis is that the OHCs only amplify distortion products (DPs) but do not produce them.