Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Study on Nutrient Mass Transport through Porous Channeled Flat Sheet Membrane and Prediction of Maximum Scaffold Thickness for Viable Cell Culture (In-vitro) by 3D Modeling for Tissue Engineering Application

N. M. S. Bettahalli[1], B. J. Papenburg [2], D. S. Stamatialis [2], M. Wessling [3]
[1]University of Twente, Enschede, The Netherlands & BMS College of Engineering, Bangalore, India
[2]University of Twente, Enschede, The Netherlands
[3]RWTH Aachen University

Tissue engineering (TE) is a multidisciplinary field involving principles of engineering and life sciences to improve the health and quality of life by repairing, restoring, maintaining, or enhancing tissue and organ function using cells, scaffolds, and growth factors alone or in combination. There are several artificial tissues that are already being used which include fabricated skin, ...

Deformable Image Registration for Pleural Photodynamic Therapy

B. Liu[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Deformable image registration is a form of medical image processing that can provide insights into the development of phenomenon and variation in normal anatomical structure over time. Prior to post-operative pleural photodynamic therapy (PDT), a series of CT scans of lungs will be acquired. During PDT treatment, an infrared navigation system is used to contour the lungs and provide real-time ...

Design of a Dielectrophoretic Based Micropipette for Gene Expression Applications Using COMSOL Multiphysics® Software

D. Wijesinghe [1], K. Nawarathna [1],
[1] Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA

We have used COMSOL Multiphysics® software to design a micropipette for single -cell gene expression profiling. The micropipette design allows us to insert it into a single-cell to extract genes through dielectrophoresis. As dielectriphoretic force depends on the applied electric field (E) and its gradient (∇E^2), we have successfully used COMSOL to calculate E and ∇E^2 in the vicinity of the ...

Modeling of the Impact of Blood Vessels Flow on the Temperature Distribution During Focused Ultrasound Exposure

K.C.P. Li, B.E. O'Neill, and E. Sassaroli
Methodist Hospital Research Institute, Houston, TX, USA

Focused ultrasound systems guided by magnetic resonance imaging (MRI) and thermometry have recently made possible the non-invasive thermal ablation of benign tumors such as uterine fibroids in clinical practice. Much more work is however required in order to make this technology available for the treatment of other forms of cancer. One of the major difficulties is associated with the presence of ...

Influence of pH and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell

A.Torrents, N. Godino, F.J. del Campo, F.X. Muñoz, and J. Mas
Universitat Autònoma de Barcelona, Spain

Microbia Fuel Cells (MFC’s) are complex environments where electrochemical, physical and biological aspects must be considered together. In this work we present a 1D model partially describing a Shewanella oneidensis MFC that degrade sodium lactate [lactate -> Acetate + CO2 + 2H+ + 2e-]. The model, simulated using COMSOL, focuses on pH implications of the MFC operation. Release of protons during ...

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

Simulations of Heat and Mass Transport During Biomass Conversion Processes Using 3D Biomass Particle Models with Realistic Morphology and Resolved Microstructure - new

P. Ciesielski[1], M. Crowley[1], L. Thompson[1], B. Donohoe[1], D. Robichaud[2], A. Sanders[3], M. Nimlos[2], T. Foust[2]
[1]Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
[2]National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
[3]Quantum Electronics & Photonics Division, National Institute of Standards & Technology, Boulder, CO, USA

Predictive simulations of biomass conversion processes will improve their technical performance and reduce economic uncertainty surrounding industrialization of biofuels production. The majority of present conversion simulations treat the biomass feedstock with simplifying assumptions that neglect important characteristics that are unique to biomass particles. These characteristics, including ...

Influence of Non-Newtonian Blood Viscosity on Wall Pressure in Right Coronary Arteries with Serial Stenoses

B. Liu [1]
[1] Monmouth University, West Long Branch, NJ, USA

Three dimensional mathematical models are developed to simulate the blood flows in patient specific right coronary arteries with two stenoses. Simulations are carried out with various flow parameters under physiological conditions. Both Newtonian and non-Newtonian blood viscosity models are applied in the simulations to examine the influence of non-Newtonian viscosity of blood on the wall ...

Computationally Assisted Design and Experimental Validation of a Novel ‘Flow-Focussed’ Microfluidics Chip for Generating Monodisperse Microbubbles

M. Conneely[1], V. Hegde[2], H. Rolfsnes[1], A. Mason[2], D. McLean[1], C. Main[1], F.J.D. Smith[2], W.H.I. McLean[2], P.A. Campbell[1]
[1]Carnegie Physics Laboratory, University of Dundee, Dundee, Scotland, United Kingdom
[2]Division of Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom

Whilst initially developed as a diagnostic aid to improve echogenicity in ultrasound imaging, gas-filled lipid microbubbles are now emerging as a next generation \'theranostic\' tool in the medical arena. Here, their therapeutic potential has now been realized through their unique capability to deliver molecular species such as drugs and genes by means of disrupting the cell membrane in response ...

Analysis to Determine Optimum Strain Gauge Locations for SENSEWHEEL - new

T. Suzuki[1], C. Holloway[1], S. Taylor[1]
[1]University College London, London, UK

Manual wheelchair users suffer shoulder pain and injury in the long term because of unconscious overuse. The ‘SENSEWHEEL’, which interposes three identical load cells between pushrim and rear wheel, measures the three components of pushing force Fx, Fy and Fz, and axial torque Tx applied at each load cell. Strain gauges were located on a diaphragm forming one face of the load cell. The ...