Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computationally Assisted Design and Experimental Validation of a Novel ‘Flow-Focussed’ Microfluidics Chip for Generating Monodisperse Microbubbles

M. Conneely[1], V. Hegde[2], H. Rolfsnes[1], A. Mason[2], D. McLean[1], C. Main[1], F.J.D. Smith[2], W.H.I. McLean[2], P.A. Campbell[1]
[1]Carnegie Physics Laboratory, University of Dundee, Dundee, Scotland, United Kingdom
[2]Division of Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom

Whilst initially developed as a diagnostic aid to improve echogenicity in ultrasound imaging, gas-filled lipid microbubbles are now emerging as a next generation \'theranostic\' tool in the medical arena. Here, their therapeutic potential has now been realized through their unique capability to deliver molecular species such as drugs and genes by means of disrupting the cell membrane in response ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...

Design of Microneedle Array for Biomedicine

N. Mane[1], A. Gaikwad[1]
[1]Department of Instrumentation, Cummins College of Engineering, Pune, Maharashtra, India

Micro electro-mechanical system (MEMS) is rapidly growing area of interest for a broad spectrum of applications. One particularly fast-growing area is biomedical applications for micromaching technologies. One application of interest to the biomedical industry is the development of microneedles. MEMS technology brings new means for biomedicine field. Patch-based transdermal drug delivery offers ...

Design of Multiple Ground System for Maternal Defibrillation - new

A. Jeremic[1], E. Khoshrowshahli[2]
[1]Electrical & Computer Engineering, McMaster University, Hamilton, ON, Canada
[2]Biomedical Engineering, McMaster University, Hamilton, ON, Canada

Although cardiac arrest may be statistically insignificant event financial and more important emotional costs in such cases are quite devastating. In this paper we study the effects of multiple grounding pads. Namely, we believe that by placing multiple pads in the lower abdominal part we would be able to decrease the current density that would be dissipated to fetus and amniotic ...

Design and Optimization of Cholesterol Biosensor

N. M. Sundaram[1], M. Alagappan[1]
[1]PSG College of Technology Coimbatore, Tamil Nadu, India

Cholesterol is an essential lipid for human body. The desired total plasma cholesterol for an individual is less than 5.2 mM (200 mg/dL) and it poses a potential health threat when the level is greater than 6.2 mM (240 mg/dL) [1]. Excessive plasma cholesterol causes poor cardiovascular conditions. The experimental fabrication of nano structured biosensor with advanced materials is more expensive ...

Electrical Stimulation of Brain using a realistic 3D Human Head Model: Improvement of Spatial Focality

A. Datta, M. Elwassif, and M. Bikson

Department of Biomedical Engineering, The City College of the CUNY, New York, NY, USA

We calculated the spatial distribution of the electric fields induced in the brain during transcranial current stimulation (TCS). The spatial focality obtained using ‘concentric-ring’ configurations is investigated using a realistic MRI derived 3D finite element model of the human head. Two disc electrode configurations were simulated using COMSOL Multiphysics. The distant-bipolar ...

Shear Induced Detachment Of Microorganisms Attached To A Plane Wall

B. Boulbène, J. Morchain, and P. Schmitz
Université de Toulouse, NSA, UPS, INP, LISBP, Toulouse, France

We present numerical results involving microorganisms adhering to a plane surface submitted to a shear flow. The purpose is to have a better understanding of the removal mechanisms occurring during the cleaning in place of food processing equipments. The biological cell, i.e. the microorganism, is modelled as a rigid obstacle embedded in the bottom wall of the fluid domain. Shear induced ...

Modelling the Response of Microdialysis Probes in Glucose Concentration Measurement

J.M. Gozálvez-Zafrilla[1], A. Santafé-Moros[1], J.L. Díez-Ruano[2], J. Bondia[2]
[1]Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM) - Universitat Politècnica de Valencia, Valencia, Spain
[2]Instituto Universitario de Automática e Informática Industrial (AI2) - Universitat Politècnica de Valencia, Valencia, Spain

Microdialysis is a technique of continuous glucose monitoring in diabetic patients. In microdialysis, a saline serum is perfused into a microdialysis probe. Glucose pass from the plasmatic fluid through the porous membrane. The glucose concentration in the dialysate obtained is measured by an external analytical device. This preliminary work aimed to obtain a model to relate glucose ...

Analysis of Heat Transfer in a Complex Three Dimensional Structure Fabricated by Additive Manufacturing - new

C. Settle[1], K. Hoshino[1]
[1]Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA

The goal of this study was to create a three dimensionally designed biomedical device with multiple functionalities and analyze its simulated heat transfer. The device would be fabricated through additive manufacturing; specifically electron beam melting (EBM). EBM has a feature size constraint of 1 mm (acceptable for this design) and is only capable of manufacturing titanium alloys [2]; a ...

Some Clinical and Computational Studies On Haemodynamics In Stenosed Artery

A. Chanda, A.R. Choudhury, G. Ray, K. Dasgupta, and D. Nag
Jadavpur University, Kolkata, West Bengal, India

Atherosclerosis in arteries is caused by the formation of stenosis : fatty depositions, on the artery wall. In current medicine, the practice is to observe the maximum percentage occlusion at any arbitrary cross-section and diagnose the patient on that basis, which might not always present the real picture due to non-uniformity of the stenosis thickness. The present work attempts to simulate the ...