Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Advancing Regulatory Science through Integrative Engineering with COMSOL Multiphysics® Software Modeling

G. Zhang [1]
[1] Department of Bioengineering, Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

The US Food and Drug Administration (FDA) faces significant challenges in its regulatory approval processes due to a lack of relevant science, and many practices are limited by laws enacted in the previous century [1]. Therefore, in recent years, the FDA has identified the need for advancements in regulatory science and innovation. In a broader sense, advancing regulatory science is not just ...

Designing Polymer Thick Film Intracranial Electrodes for use in Intra-Operative MRI Setting.

G. Bonmassar[1], and A. Golby[2]
[1]AA. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
[2]Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA

A new type of MRI compatible intracranial electrode based on Polymer Thick Film (PTF) is presented and studied using COMSOL Multiphysics. The geometry considered was a two-dimensional cross section cut of 5 mm thick electrodes with 5 cm leads on top of a 2×10 cm slab representing Gelfilm, or the substrate. The resistive leads were compared with metallic leads to estimate the ...

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

Simulation of Transport of Lipophilic Compounds in Complex Cell Geometry

Q.A. Chaudhry[1], M. Hanke[1], and R. Morgenstern[2]
[1]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
[2]Karolinska Institutet, Stockholm, Sweden

The mathematical modeling of the diffusion and reaction of toxic compounds in mammalian cells is tough task due to their very complex geometry. The heterogeneity of the cell, particularly the cytoplasm, and the variation of the cellular architecture, greatly affects the behavior of these toxic compounds. Homogenization techniques have been implemented for the numerical treatment of the model. ...

3D Model of Flow Behavior near Dermal Denticles from Shark Skin

A. N. Kolborg [1],
[1] Technical University of Denmark, Lyngby, Denmark

This project makes a first attempt at modelling fluid flow over shark skin on a microscopic level. The modeled fluid flow shows good agreement with theory. Further refinement of the model parameters holds promises of better understanding of this complex fluid flow phenomenon. The COMSOL Multiphysics® model was evaluated against micro particle image velocimetry measurements of the same flow ...

Nonlinear Mechanical Modeling of Thermoplastics

J. Bergstrom [1], N. Elabbasi [1],
[1] Veryst Engineering, Needham, MA, USA

The use of thermoplastic materials is increasing and it is becoming more important during the design process to accurately represent the non-linear material response in relevant loading conditions. The COMSOL Multiphysics® software supports advanced modeling capabilities for large deformation analyses, including contact and multiphysics couplings. It is now also possible to use advanced non ...

Development of a Microfluidic-Based Electrochemical Cell for Analyzing Bacterial Biofilms

I. Claydon [1], J. Turner [1], B. Sammakia [1],
[1] Binghamton University, Binghamton, NY, USA

The ubiquitous nature of biofilms has led to a growing need to be able to detect, control, and maintain or remove them. Therefore a robust testing platform that allows for multiple analytical techniques is required to better understand their multitude of properties. The development of the self-contained microfluidic-based electrochemical cell portion of a multifaceted analysis system is ...

Modelling of Thermally Induced Electrical Instabilities in Intestine using COMSOL Multiphysics®

A. Gizzi[1][3], C. Cherubini[1][2], S. Migliori[1][3], and S. Filippi[1][2]
[1]Nonlinear Physics and Mathematical Modeling Lab, Engineering Faculty, University Campus Bio-Medico, Roma, Italy
[2]International Center for Relativistic Astrophysics, University of Rome La Sapienza, Roma, Italy
[3]Alberto Sordi Foundation, Research Institute on Aging, Roma, Italy

Postoperative or paralytic Ileus (PI) is a temporary aftermath of major abdominal surgeries. PI prevents the passage of food throughout the lumen leading to bloating, distension, emesis and pain. A plausible mathematical model for this phenomenology physiologically fine tuned including thermal variations, is presented here. Using COMSOL Multiphysics the existing intestinal ionic model have been ...

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

Muscle-Electrode Interface Simulation

A. Altamirano, C. Toledo, A. Vera, R. Muñoz, and L. Leija
Centro de Investigacion y Estudios Avanzados
Instituto Politecnico Nacional
Mexico

In this article, the aim is to study different types and forms of electromyography (EMG) electrodes, for bipolar configuration, and the electric interface with muscle phantom. COMSOL Multiphysics allows modeling shapes and contact surfaces. Surface and needle electrodes will be modeled. A number of different trials and combinations will be presented; exploring different geometric shapes and ...