See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Bioscience and Bioengineeringx

Non-Newtonian Hemodynamics and Shear Stress Distribution in Three Dimensional Model of Healthy and Stented Coronary Artery Bifurcation

M.M. Zarandi[1], R. Mongrain[1], and O.F. Bertrand[2]
[1]McGill University, Montreal, QC, Canada
[2]Laval University Quebec City, QC, Canada

In this paper, a three-dimensional model of the coronary artery bifurcation is developed and physiological flow in the both healthy and stented coronary artery bifurcation is modeled using COMSOL Multiphysics. Wall shear stress induced by endovascular stents in the coronary artery ... Read More

Drug Distribution in the Human Eye

L. Murtomäki[1], T. Kainuvaara[1]
[1]University of Helsinki, Helsinki, Finland

Drug therapy of the posterior segment of an eye is very challenging due to the difficult accessibility. Modern drugs often are large molecules, such as peptides, antibodies or oligonucleotides which are administrated, e.g. by intravitreous injections which requires clinical conditions. ... Read More

Photon Migration Through Multiple Layers of Biological Tissue

M.S. Yeoman[1], E. Sultan[2]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]College of Technological Studies, PAAET, Adailiyah, Kuwait

The modeling of light propagation through multiple layers of biological tissue are assessed & compared to the theoretical predictions by Perelman at al. [94 & 95] of the most-favorable-path (MFP). The MFP on which photons will be found can be obtained from the path of the net flux ... Read More

A Model of Noninvasive Radiofrequency Tissue Heating

L. Rems[1], D. Miklavcic[1]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

Noninvasive radiofrequency (RF) tissue heating is frequently used for skin tightening and facial wrinkle reduction as alternative to invasive surgical procedures. However, to ensure a safe and efficient therapy, the temperature of the skin and the subcutaneous tissue must be controlled ... Read More

Trapping of Single-Cells Within 3D Electrokinetic Cages

K. Keim [1], A. Gonçalves [1], C. Guiducci [1],
[1] École Polytechnique Fédérale de Lausanne - Laboratory of Life Sciences Electronics (Guiducci Lab), Lausanne, Switzerland

This paper reports the modelling and analysis of three dimensional negative dielectrophoretic traps for cell trapping applications. Dielectrophoresis is a well-established technique for cell analysis and cell trapping. Planar electrodes, at the bottom of a microfluidic channel, have ... Read More

Bioheat Dissipation of a Implantable Brain-Machine Interface

J. M. Herrera Morales [1],
[1] Wyss Center for Bio and Neuroengineering, Switzerland

Brain-Machine Interfaces (BMI) provide a direct communication link between brain and external devices such as speech synthesizers and robotic prosthesis to restore speech and movement in persons affected by Spinal Cord Injuries or neurodegenerative diseases such as Amyotrophic Lateral ... Read More

From customer requirement to product requirement with COMSOL

A.B. Nilsson
BD Medical - Medical Surgical Systems, Helsingborg, Sweden

Anders B Nilsson graduated M. Sc. in engineering physics from Lund University in Sweden. He has been working in the R&D department at BD Medical as principal engineer and project leader since 2005. He uses COMSOL for a wide range of functions, such as early concept development and ... Read More

Comparison of Computational Methods for the Estimation of the Dielectrophoretic Force Acting on Biological Cells and Aggregates in Silicon Lab-on-chip

S. Burgarella[1], F. Maggioni[2], and G. Naldi[2]
[1]STMicroelectronics, Agrate Brianza, Milan, Italy
[2]Department of Mathematics, University of Milan, Milan, Italy

Dielectrophoresis is a method for cell manipulation in miniaturized devices exploiting the dielectric properties of cells and/or cellular aggregates suspended in a fluid and subjected to a high-gradient electric field. The mathematical expression of the force is obtained by a multipole ... Read More

A Mathematical Tool for Studying Drug Delivery to the Eye in Case of Glaucoma

P. Silva[1], J.A. Ferreira[2], P. de Oliveira[2]
[1]Coimbra Institute of Engineering, CMUC, Coimbra, Portugal
[2]Department of Mathematics University of Coimbra, CMUC, Coimbra, Portugal

The aim of the poster is to present a coupled 2D mathematical model to predict the evolution of drug concentration - in the cornea and in the anterior chamber of the eye - when therapeutic lenses are used (Figure 1). The mathematical model takes into account (i) diffusion processes in ... Read More

A Multiscale-Multiphysics Model for Axon Pathfinding Simulation, the Example of the Olfactory System

G. Naldi[1], G. Aletti[1], P. Causin[1]
[1]Dipartimento di Matematica ‘F. Enriques’, Università degli Studi di Milano, Milano, Italy

In the developing embryo, neurons form connections by projecting axons to appropriate target areas. The projection process includes neurite elongation, resulting from the assembly of new cytoskeletal material at the free end of the axon, a complex cascade of steering decisions, driven by ... Read More