Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Determination of Mechanic Resistance of Osseous Element Through Finite Element Modeling

E. Isaza[1], E. Salazar[1], L. Florez[1]
[1]Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

The consequences of hip fracture and femoral fracture are widely known. The mechanical strength of the femur varies in every person, but it is possible to predict the mechanical resistance with parameters like density, dimensions and mineral content. This paper uses different models and empirical studies to determine the mechanical properties of the human femur, developing isotropic and ...

Modeling of Hydrogel-Based Controlled Drug Delivery System for Breast Cancer Treatment - new

K. Cluff[1], L. Saeednia[2], H. Mehraein [1], R. Asmatulu[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA

Polymeric hydrogel is a promising class of drug delivery systems with the controlled release behavior in the body. In-situ forming hydrogels can be injected into the body as a fluid which forms a gel within the body tissue and improve the efficacy of the drugs. Various polymers have been used as in-situ hydrogel formulations. These polymeric formulations can form gels at body temperature while ...

Analysis of 3D Biocompatible Additive Structure Using COMSOL Multiphysics® Software - new

E. Lacatus[1], M. A. Sopronyi[2], G. C. Alecu[1], A. Tudor[1]
[1]Polytechnic University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

For biocompatible prosthetics, from dental implants up to bone parts, manufacturers have to find the best way to correlate process parameters and the material properties as to meet the unique needs of individuals. Additive manufacturing techniques aim at creating complex biocompatible structures able to overcome the present shortfalls of the metal and metal alloys implants related to ...

A Novel Plug n Play MEMS-Based DNA Microarray

K. Jindal [1], V. Grover [1], B. Nayak [1],
[1] Birla Institute of Technology and Science - Pilani, Ghaziabad, Uttar Pradesh, India

Microarrays are extensively used in modern biology as tools of multiplexed, high throughput analysis to study thousands of genes and their expression inside cells at once [1]. The basic principle of a microarray is quantitative detection of fluorophore tagged DNA. Use of this method results in microarray experiments being expensive and complex due to fragile and costly fluorophores and ...

Using COMSOL Multiphysics for Modeling of Musculoskeletal Biomechanics

R. L. Spilker
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, New York, USA

In this presentation, we study the modeling of physiology and muscoskeletal biomechanics using COMSOL. The outline for the presentation is in particular: Why is COMSOL particularly powerful for modeling physiology? Modeling soft tissues like cartilage Optimization to determine soft tissue properties Modeling of moving loads in the TMJ Robust 3D models from imaging data Model of primary ...

Simulation of Transdermal Toxin Expulsion via Adsorptive Dermal Patch using COMSOL Multiphysics®

H. Kwon[1], M. Hess II[1], R. M. Polski
[1]Andrews University, Berrien Springs, MI, USA

Mathematical skin models play an important role in fields such as transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been conducted on modeling skin for transdermal drug delivery; however, little effort has been made to view the skin as a permeable layer to expel waste chemicals or toxins from the body. In this work, we focused on topical ...

Surface Charge Modulated Ionic Conductance of Closed Solid State Nanopore Biosensors

H. Ghosh [1], C. Roychaudhuri [1],
[1] Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal, India

This paper explores surface charge modulated ionic conductance of closed solid-state nanopores for explaining significant nonlinear length dependent variation in ionic current in such nanopore biosensors with a view to design improved sensors without increasing fabrication cost for biomolecule detection. Although extensive work has been done in modeling open pore conductance, closed nanopores ...

Ultrasensitive Mass Sensing Through Coupled Microelectromechanical Resonator Arrays

A. R. Hambarde [1], R. M. Patrikar [1],
[1] Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India

Microelectromechanical coupled resonating arrays are being used for detecting biological and chemical analytes through mass sensing. Such arrays of perfectly identical resonators can be considered as periodic, ordered, non-localized systems. The change in the eigen parameters of the system upon mass or stiffness perturbation is a measure of the amount of perturbation. An attempt has been made in ...

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

L. C. Zaragoza[1], B. Hondorp[2], M. A. Rossi[3]
[1]ITESM, Monterrey, Mexico
[2]Rush Medical College, Chicago, IL, USA
[3]Rush University Medical Center, Chicago, IL, USA

The goal of our work was to calculate a patient-specific brain conductivity map for predicting the extent to which direct stimulation therapy can strategically propagate through pathological white matter. Our laboratory developed isotropic and anisotropic human brain finite element method (FEM) models derived from SPGR magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), ...

Magnetic Heating of Iron Oxide Nanoparticles with Alternating Magnetic Field for Hyperthermia Applications

N. M. Sundaram[1], M. Sneha[1], R. S. Vishnu[1], M. Alagappan[1]
[1]PSG College of Technology Coimbatore, Tamil Nadu, India

The current therapies available to treat cancer patients are surgical operation and chemo therapy. The drawbacks are the side effects caused by these therapies. Hyperthermia is a treatment technique based on deactivation of cancer cells by raising the temperature in the range of 43 ºC and 48 ºC and has gained attention as an alternative therapy for cancer treatment. Iron oxide nanoparticles have ...