Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion

D. Dalle Nogare[1] and P. Canu[1]

[1]Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy

This work investigates the effects of boundary conditions on the species profiles in heterogeneous catalysis, with low Péclet systems. Hydrogen combustion in Helium was chosen because of the high diffusivities. Furthermore, already at T=300°C over a Pt catalyst, kinetics is very fast and the composition gradients at the inlet extremely steep. The issue is analyzed with 1D models, ...

Simulation of Surface Chemical Reactions in a Monolith Channel for Hydrogen Production

N. Pacheco[1], D. Pavone[1], K. Surla[1], J. Houzelot[2], and E. Schaer[2]
[1]IFP-Lyon, Solaize, France
[2]ENSIC, Solaize, France

This paper intends to show a model of a monolithic reactor for the autothermal reforming process (ATR), a process that uses hydrocarbons to produce H2. The ATR chemical reactions take place on the surface of monolith channels coated with a catalyst. The isothermal ATR reactor is modeled using 42 catalytic surface chemical reactions that involve 13 solid species and 7 gas species. To solve the ...

Numerical Simulation of pH-sensitive Hydrogel Response in Different Conditions

M.K. Ghantasala[1], B.O. Asimba[1], A. Khaminwa[1], K.J. Suthar[2], D.C. Mancini[3]
[1]Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI, USA
[2]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
[3]Physical Sciences and Engineering, Argonne National Laboratory, Argonne, IL, USA

The understanding of pH-sensitive hydrogel swelling response in different buffer environmental condition is essential for its use in different practical applications. This necessitates its simulation in steady state and transient conditions. This paper mainly deals with the details of the numerical simulation performed by developing coupled formulation of chemo-electro-mechanical behavior of ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

3D Modeling of Hydrogen Absorption in Metal Hydride Hydrogen Storage Bottles

R. Busqué [1], R. Torres [1], A. Husar [2], J. Grau [1]
[1] Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Barcelona, Spain
[2] Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

The storage of hydrogen as an absorbed element in metal hydride bottles is a promising technique for energy storage. In this work, a three-dimensional model of a charging process in a metal hydride container has been developed to simulate the absorption reaction and resultant heat and mass transport phenomena in metal hydride vessels. The model has been experimentally validated showing a good ...

Humidity Mass Transfer Analysis in Packed Powder Detergents

F. Zonfrilli[1], V. Guida[1], L. Scelsi[1]
[1]Procter & Gamble Italia, Pomezia, Roma, Italy

Powder detergents containing sodium percarbonate and bleach activators undergo chemical decomposition when exposed to high relative humidity. Controlling the moisture intake in finished product packs is therefore a fundamental need in order to guarantee product stability during the whole supply chain. In this paper we show how we have leveraged COMSOL Multiphysics capability in order to model ...

An Equivalent Kd-based Radionuclide Transport Model Implemented in COMSOL Multiphysics® Software

O. Silva [1], E. Abarca [1], J. Molinero [1], U. Kautsky [2]
[1] Amphos 21 Consulting, Barcelona, Spain
[2] Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

Radionuclide sorption is often simulated using a lumped approach where retention processes are represented by the distribution coefficient (Kd), which relates the radionuclide mass retained in the solid phase to its aqueous concentration. Classical Kd-based simulations rely on two strong assumptions: Kd depends on soil properties and is constant in time. However, sorption processes depend also ...

Numerical Analysis of the Self-Heating Behaviour of Coal Dust Accumulations - new

D.Wu[1], E. Van den Bulck[1]
[1]Katholieke Universiteit Leuven, Department of Mechanical Engineering, KU Leuven, Belgium

Introduction Self-heating behaviour of dust accumulations is a multiphysics field coupled heat and mass transfer in the porous media. A typical experimental apparatus with a hot storage oven and mesh wire baskets has been taken as the study object. The influence of gas flow velocity, oxygen concentration and ambient temperature on the self-heating behaviour of the dry coal dust sample has been ...

Design and Characterization of a Small Volume Reactor for the High Pressure Invacuo Study of Catalytic Surface Reactions

C. Clark[1,2], J. Fulton[3], T. Adams[3], E. Podgornov[4], and F. Zaera[4]
[1]Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
[2]Naval Surface Warfare Center, Corona, CA, USA
[3]Naval Surface Warfare Center, Crane, IN, USA
[4]Department of Chemistry, University of California, Riverside, CA, USA

The design and construction of ultra-high vacuum (UHV) systems for the study of surface reactions has lead to high impact innovation in a myriad of industries. A small volume reactor compatible with ultrahigh vacuum (UHV) surface-science instrumentation has been designed, modeled and tested for the study of the kinetics of surface chemical reactions on single crystals. CO oxidation experiments ...

Simulation and Design of a Microfluidic Respirometer for Semi-Continuous Amperometric Short Time Biochemical Oxygen Demand (BODST) Analysis

F.J. del Campo[1], A. Torrents[1], J. Mas[2], F.X. Muñoz[1]
[1]Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
[2]Departement de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Introduction: This work presents the design of a novel flow cell based miniaturized electrochemical respirometer to monitor organic content in water samples semi-continuously, in contrast to current Biochemical Oxygen Demand, BOD, methods. Simulation techniques has been used to parameterize and optimize aspects such as height and length of the channels, materials and thickness, flow and oxygen ...