Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL News Magazine 2017

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to ...

A COMSOL Multiphysics® Study of the Temperature Effect on Chemical Permeation of Air Supply Tubes

R. Kher [1], C. Gallaschun [1], D. Crockill [1], R. Pillai [1], ,
[1] Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Air supply hoses are also predominantly used in the medical industry to aid in patient oxygen intake. In many situations, the outside of the hose can be contaminated with chemicals, especially if the hose lies on the ground in an environment where chemicals are easily found. Permeation and transport of chemicals into the walls of air supply hoses is a noteworthy problem in the chemical ...

Simulation of a Supercritical Fluid Extraction Process Using COMSOL Multiphysics® Software

B. Suryawansi [1], B. Mohanty [1],
[1] Indian Institute of Technology Roorkee, Uttarakhand, India.

In the present work, COMSOL Multiphysics® software was used to solve a mass transfer based mathematical model (Stastova et al., 1996) which is a modified form of Sovova H.,1994 model. The modification has been brought about by introducing the term ‘Grinding efficiency’ in the model and the results of the this model has been compared with the theoretical results obtained by Duba and Fiori, 2015 ...

A COMSOL Multiphysics®-based Model for Simulation of Methane-Hydrate Dissociation by Injection of Superheated Carbon Dioxide

M. Gharasoo[1], C. Deusner[1], N. Bigalke[1], M. Haeckel[1]
[1]Department of Marine Geosystems, GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany

Immense amounts of methane are stored as gas-hydrate deposits in deep layers of marine sediments. This has raised considerable interest to develop strategies for producing natural gas from marine hydrates. One potential production strategy is the injection of supercritical CO2 into methane hydrate-bearing sand layers to release the CH4 as a gas and sequester the CO2 as hydrate. We used COMSOL ...

A Flow and Transport Model of Catalytic Multi-Pump Systems with Parametric Dependencies

A. Sen [1], D. Myers [1], A. Altemose [1],
[1] Department of Chemistry, Pennsylvania State University, University Park, PA, USA

This poster studies catalytic micropumps and their ability to induce fluid flow on the microscale. The goal of the study is to design a long-distance, directed convective loop. An array of catalytic micropumps was constructed in the domain, comprised of two distinct catalysts in an alternating pattern with a uniform concentration of their respective reagents in the surrounding geometry. Two ...

Analysis of Deformation of a Liquid Packaging Made With Board of the LPB Type

K. B. Matos [1], I. Neitzel [1],
[1] FATEB, Telêmaco Borba, PR, Brazil

The liquid food product packaging are today predominantly made with board LPB type board (Liquid Packaging Board) composite formed by board, which offers mechanical strength, polyethylene, constituent responsible for protection against the passage humidity, and aluminum foil, which helps protect against oxygen flow. On the day, paper and board are words used as synonyms for each other. ...

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

H2SO4 Catalysis: Perspective and Opportunities for Reducing SO2 Emissions - new

P. L. Mills[1], A. Nagaraj[2]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA
[2]Department of Environmental Engineering, Texas A&M University, Kingsville, TX, USA

Introduction: Development of next-generation chemical processes that have zero emissions is a key environmental objective for sustainable development. The manufacture of H2SO4 by the air oxidation of SO2 to SO3 is an important technology where an opportunity exists for new catalyst development and process innovation by reducing emissions of unconverted SO2 in process reactor tail gases owing to ...

Coupled Numerical Modeling and Thermodynamic Approach for SiC Growth Process

J. M. Dedulle [1], K. Ariyawong [1], D. Chaussende [2]
[1] Univ. Grenoble Alpes, Grenoble, France
[2] CNRS, Grenoble, France

Silicon carbide (SiC) single crystals are industrially produced by the physical vapor transport technique. Apart from the geometry of the growth setup, there are two main process parameters that can be controlled: temperature and pressure. To support the development of the process, numerical simulation has imposed as the only tool able to describe the process itself, providing a good evaluation ...

Perforation Effect on a Rectangular Metal Hydride Tank for Hydriding and Dehydriding Process

E. Gkanas[1][2], S. Makridis[1][2], E. Kikkinides[1], A. Stubos[2]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[2]Environmental Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR 'Demokritos', Agia Paraskevi, Athens, Greece

Hydrogen storage in a metal hydride bed, uses an intermetallic alloy that can absorb efficiently high amounts of hydrogen by chemical bonding resulting to metal hydrides. This alloy is capable of absorbing and desorbing hydrogen while maintaining its own structure. The heat, mass and momentum transfer in a metal-hydride reactor is mathematically described by energy, mass and momentum balance ...