Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Gravity-Driven Flow Through a Microfluidic Device on a Rocker Platform - new

B. Srinivasan[1], J. Hickman[1], M. Shuler[2]
[1]University of Central Florida, Orlando, FL, USA
[2]Cornell University, Ithaca, NY, USA

A micropump delivers fluid between different components of a microfluidic device in a controlled manner. The elimination of micropump can reduce the design complexity, simplify fabrication, shrink the device footprint and decrease the set-up time required for the operation of the microfluidic device. One such pumpless microfluidic device for body-on-a-chip application for drug toxicity studies ...

Simulation of the Plasma Generated in a Gas Bubble

L. Z. Tong[1]
[1]Keisoku Engineering System Co., Ltd., Tokyo, Japan

The plasmas generated in water involve various physical phenomena such as flows agitated by bubbles, high electric fields for breakdown, discharges in bubbles with size variation, and so on. In this paper, studies have been made on the simulation of plasmas generated in bubbles with size variation. The species taken in account include electrons, three kinds of ions, and ten kinds of neutral ...

A Modified Koutecký-Levich Equation for the Analysis of Electrochemical Flow Cells with Complex Geometries

S. A. Tschupp [1], S. E. Temmel [1], N. Poyatos Salguero [1], J. Herranz [1], T.J. Schmidt [2],
[1] Paul Scherrer Institut, Villigen, Switzerland
[2] ETH Zürich, Zürich, Switzerland

Electrochemical flow cells have found widespread use in analytical chemistry due to their short response time, high sensitivity and selectivity. The geometrical flexibility and therefore, the ease of coupling the electrochemical to other experimental techniques has attracted considerable interest for applications in electrocatalytic research as well. Such coupling is far more cumbersome with the ...

Simulation and Experimental Analysis of Drug Release Rates from Magnetic Nanocomposite Spheres - new

L. Saeeednia[1], H. Mehraein[2], F. Abedin[1], K. Cluff[2], R. Asmatulu[1]
[1]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
[2]Department of Bioengineering, Wichita State University, Wichita, KS, USA

Targeted drug delivery systems have been wildly studied in cancer therapy due to the toxicity of most of chemotherapeutic drugs. Nanoparticles can be attached to the small molecules of the drugs and serve as drug carriers to deliver the drug molecules into the area of interest. In this research, polymeric microspheres containing biodegradable poly(D, L-lactide-co-glycolide) (PLGA), magnetic ...

A COMSOL Multiphysics® Software Interface with GEMS3K for Modeling Reactive Transport (Geo)Chemical Processes

O. B. Isgor [1], V. J. Azad [1],
[1] Oregon State University, Corvallis, OR, USA

This paper presents a generic interface for reactive transport process modeling that was developed between the COMSOL Multiphysics® software Java API (transport model) and GEMS3K (reaction model). While the transport of different species, kinetics of dissolution/precipitation, system potentials, fluid and gas flow, etc. can be modeled in a complex chemical system with COMSOL® software, the ...

A CFD Analysis of the Operating Conditions of a Multitube Pd Membrane for H2 Purification - new

B. Castro-Dominguez[1], R. Ma[1], A. G. Dixon[1], Y. H. Ma[1]
[1]Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA

The optimization of operating conditions in multitube membrane modules is highly complex. The multiple physics and irregular geometries involved create a challenge for predicting their behavior. This work analyzes the performance of H2 purification through a module containing seven membranes. Using experimental parameters, a 3-D model was devised, specifying the membrane as a reacting boundary ...

Modeling of Mixing-Sensitive Pharmaceutical Drug Substance Processes in Batch Reactors

F. Akpinar [1], B. Cohen [1], J. Tabora [1], A. Glace [1], K. Lauser [1], F. Lora Gonzalez [1], J. Albrecht [1],
[1] Bristol-Myers Squibb, New Brunswick, NJ, USA

Manufacturing of pharmaceutical drug substances involves chemical unit operations that are dependent on effective mixing, particularly reactions and crystallizations. Poor mixing can cause uneven distribution of chemical species in stirred tanks, leading to impurity formation and decrease in selectivity during reactions, and localized supersaturation, uncontrolled nucleation, impurity entrapment ...

Simulator for Automotive Evaporative Emissions Restraint Systems

S. Schlüter [1], E. Schieferstein [1], T. Hennig [1], K. Meller [1],
[1] Fraunhofer UMSICHT, Oberhausen, Germany

Fuel vapor restraint systems are used in vehicles to avoid discharge of volatile hydrocarbons from fuel tanks. The topic of this paper is the proper operation of fuel vapor restraint systems depending on the composition of bioethanol-fuel-blends. Experimental data serve as input to a model built with COMSOL Multiphysics® to simulate the performance of fuel vapor restraint systems depending on ...

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

M. Ghadrdan[1], and H. Mehdizadeh[2]
[1]Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
[2]Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Interest in the production of hydrogen from hydrocarbons has grown significantly recently. In order to achieve high surface to volume ratio with reasonable pressure drop, monolithic reactors are used. The goal of this work is to develop a two-phase (gas & solid) transient catalytic combustor model using a simplified flow field inside a single channel to test the advantages of the COMSOL ...

3D Modelling of Flow Dynamics in Packed Beds of Low Aspect Ratio - new

F. Alzahrani[1], F. Aiouache[1]
[1]Engineering Department, Lancaster University, Lancaster, UK

This work used the 3D CFD modeling to investigate non-uniform deactivation in packed bed reactors of low aspect ratios under steady state and dynamic operations. In order to explore the effects of condition of instability on local deactivation, detailed knowledge of flow dynamics (i.e. local structure of the packed bed, pressure drops and interstitial flow in the void space), heat and mass rate ...