Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

2-D Modeling of Underground Coal Gasification (UCG)

S. Mahajani[1], S. Srikantiah[1], G. Samdani[1], A. Ganesh[1], P. Aghalayam[2]
[1]Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Institute of Technology Madras, Chennai, India

UCG is a process which converts coal to syn gas at the underground coal seam itself. UCG can help meeting the rising energy demand by utilizing coal resources that otherwise would be too deep, or of poor quality, or simply not economical to mine. As UCG takes place, a cavity is formed underground in the coal seam which grows three-dimensionally. The objective of this work is to develop a two ...

Modeling an Adsorption Process in a Shell-and-Tube-Heat-Exchanger-Type Adsorber - new

G. Salazar Duarte[1], B. Schürer[1], C. Voss[1], D. Bathen[2]
[1]Linde AG, Munich, Germany
[2]Universität Duisburg-Essen, Duisburg, Germany

Pressure Swing Adsorption (PSA) and Temperature Swing Adsorption (TSA) are commonly used for separation/purification of gas mixtures in industrial processes. The cycle time of industrial TSA processes usually ranges from several hours to days. The reason for this long cycle time is the usage of purge gas for heating and cooling the system (direct heating), which limits the application of TSA ...

iCP 1.0: Stable Release Version of the Interface COMSOL-PHREEQC - new

A. Nardi[1], L. M. deVries[1], A. Sainz[1], J. Molinero[1]
[1]Amphos 21 Consulting, Barcelona, Spain

iCP (Nardi et al, 2014) is a software that couples two standalone simulation programs: COMSOL Multiphysics® and PHREEQC (Parkhurst & Appelo, 2013). The tool is ideal for applying multiphysics and geochemistry in Earth Sciences. Flexibility of the two coupled codes result in an extensive list of modelling areas, offering good opportunities for R+D. The iCP 1.0 is the version of the ...

Modeling of Mixing-Sensitive Pharmaceutical Drug Substance Processes in Batch Reactors

F. Akpinar [1], B. Cohen [1], J. Tabora [1], A. Glace [1], K. Lauser [1], F. Lora Gonzalez [1], J. Albrecht [1],
[1] Bristol-Myers Squibb, New Brunswick, NJ, USA

Manufacturing of pharmaceutical drug substances involves chemical unit operations that are dependent on effective mixing, particularly reactions and crystallizations. Poor mixing can cause uneven distribution of chemical species in stirred tanks, leading to impurity formation and decrease in selectivity during reactions, and localized supersaturation, uncontrolled nucleation, impurity entrapment ...

Reactive Transport Modeling of CO2 in Carbonate Rocks: Single Pore Model

P. Agrawal [1], J. Koskamp [1], A. Raoof [1], M. Wolthers [1],
[1] Utrecht University, Utrecht, The Netherlands

Dissolution of calcite plays an important role in various processes such as enhanced oil and gas recovery, CO2 sequestration, and groundwater transport for the drinking water production. Dissolution rates predicted by pore scale and continuum scale models are often faster than the observed laboratory rates (Molins et.al., 2014). This discrepancy suggests that the importance of pore scale ...

Numerical Study of Smoldering Combustion of Activated Carbon in Ⅱ Iodine Absorber - new

T. Liang[1], M. Liu[1], X. Liu[1], Z. Meng[1]
[1]Safety Engineering, Zheng Zhou University, Zheng Zhou, Henan, China

Iodine absorber is a widely used purification equipment for purifying air in a nuclear power plant. In China, the common type is Ⅱ iodine absorber. Impregnated activated carbon is the main absorber within the iodine absorber. Because of the decays exothermic of radioactive iodine, heat is generated in the adsorption process. Carbon is a combustible material. Moreover, air is always supplied in ...

Modeling and Simulation of Hydrogen Generation in Membrane Reactor via Steam Octane Reforming

N. Ghasem [1], A. Y. Alraeesi [1],
[1] UAE Univeristy, Alain, United Arab Emirates

Various hydrocarbon compounds have been converted into pure hydrogen by using a catalyst and a palladium membrane in one reactor (PMR) in a one-step process where the reaction proceeds to almost complete conversion. Octane is converted into pure hydrogen using of a palladium membrane reactor is described. Catalysts are used to endorse reactions such as methane steam reforming. These reactions ...

Reactive Transport and Convective Mixing During CO2 Migration in a Saline Aquifer

E. Abarca[1], A. Nardi[1], F. Grandia[1], J. Molinero[1]
[1]Amphos21 Consulting, Barcelona, Spain

The capture and storage of CO2 in deep geological formations is one of the proposed solutions to reduce CO2 emissions to the atmosphere. CO2 is injected as a supercritical fluid deep below a confining geological formation that prevents its return to the atmosphere. A configuration of denser CO2-enriched brine overlying lighter water leads to convective flow and the formation of gravity fingers ...

3D Modeling of Hydrogen Absorption in Metal Hydride Hydrogen Storage Bottles

R. Busqué [1], R. Torres [1], A. Husar [2], J. Grau [1]
[1] Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Barcelona, Spain
[2] Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

The storage of hydrogen as an absorbed element in metal hydride bottles is a promising technique for energy storage. In this work, a three-dimensional model of a charging process in a metal hydride container has been developed to simulate the absorption reaction and resultant heat and mass transport phenomena in metal hydride vessels. The model has been experimentally validated showing a good ...

Study of Electrochemically Generated Two-Phase Flows

J. Schillings [1], O. Doche [2], J. Deseure [1],
[1] LEPMI, Grenoble, France
[2] SIMAP, Grenoble, France

The dependency of electrochemical processes performances on mass transfer is well-known. Electrolyte flow in the vicinity of electrodes surface can enhance reactions due to increased mass transfer. This flow can be generated by the production of a gaseous phase, leading to a natural bubble-driven convection flow. As a drawback, gas bubbles also modify electrodes active surface and the ...