Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Modeling of a Biogas Steam Reforming Reactor for Solid Oxide Fuel Cell Systems

F. Cipitì[1]
[1]CNR-ITAE, Institute of Advanced Technologies for Energy, Messina, Italy

A biogas steam reforming reactor has been developed in order to be integrated into a proof-of-concept SOFC system, able to operate with biogas produced in an industrial waste water treatment unit. A mathematical model, aimed at describing the performance of the reactor, has been developed. The reactor is simplified and modeled as a non-isothermal plug flow reactor. The reactor is fed with a ...

An Equivalent Kd-based Radionuclide Transport Model Implemented in COMSOL Multiphysics® Software

O. Silva [1], E. Abarca [1], J. Molinero [1], U. Kautsky [2]
[1] Amphos 21 Consulting, Barcelona, Spain
[2] Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

Radionuclide sorption is often simulated using a lumped approach where retention processes are represented by the distribution coefficient (Kd), which relates the radionuclide mass retained in the solid phase to its aqueous concentration. Classical Kd-based simulations rely on two strong assumptions: Kd depends on soil properties and is constant in time. However, sorption processes depend also ...

3D Modeling of Hydrogen Absorption in Metal Hydride Hydrogen Storage Bottles

R. Busqué [1], R. Torres [1], A. Husar [2], J. Grau [1]
[1] Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Barcelona, Spain
[2] Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

The storage of hydrogen as an absorbed element in metal hydride bottles is a promising technique for energy storage. In this work, a three-dimensional model of a charging process in a metal hydride container has been developed to simulate the absorption reaction and resultant heat and mass transport phenomena in metal hydride vessels. The model has been experimentally validated showing a good ...

Humidity Mass Transfer Analysis in Packed Powder Detergents

F. Zonfrilli[1], V. Guida[1], L. Scelsi[1]
[1]Procter & Gamble Italia, Pomezia, Roma, Italy

Powder detergents containing sodium percarbonate and bleach activators undergo chemical decomposition when exposed to high relative humidity. Controlling the moisture intake in finished product packs is therefore a fundamental need in order to guarantee product stability during the whole supply chain. In this paper we show how we have leveraged COMSOL Multiphysics capability in order to model ...

Simulation of Surface Chemical Reactions in a Monolith Channel for Hydrogen Production

N. Pacheco[1], D. Pavone[1], K. Surla[1], J. Houzelot[2], and E. Schaer[2]
[1]IFP-Lyon, Solaize, France
[2]ENSIC, Solaize, France

This paper intends to show a model of a monolithic reactor for the autothermal reforming process (ATR), a process that uses hydrocarbons to produce H2. The ATR chemical reactions take place on the surface of monolith channels coated with a catalyst. The isothermal ATR reactor is modeled using 42 catalytic surface chemical reactions that involve 13 solid species and 7 gas species. To solve the ...

CO2 Storage Trapping Mechanisms Quantification

A. Nardi[1], E. Abarca[1], F. Grandia[1], J. Molinero[1]
[1]Amphos 21, Barcelona, Spain

The capture and storage of CO2 in deep geological formations is one of the proposed solutions to reduce CO2 emissions to the atmosphere. CO2 is injected as a supercritical fluid deep below a confining geological formation that prevents its return to the atmosphere. In general, four trapping mechanisms are expected, which are of increasing importance through time: (1) structural, (2) residual ...

Multiphase Porous Media Model for Microwave Drying Spherical Potatoes - new

H. Zhu[1], T. Gulati[2], K. Huang[1], A.K. Datta[2]
[1]Sichuan University, Chengdu, Sichuan, China
[2]Cornell University, Ithaca, NY, USA

Mathematical description of microwave drying requires the solution of two different physics: electromagnetics in the microwave oven cavity and food material and, transport process (mass, momentum and heat transport) in the food material. Maxwell’s equations for electromagnetics were solved using the RF Module using the GMRES iterative solver with the GeometricMultigrid preconditioner. Mass, ...

Analyte Capture from Liquid Samples: Size Matters

M. Weber[1], M. Reed[1]
[1]Yale University, New Haven, CT, USA

Arrays of vertical pillars, Micro Purification Chips, have been widely used for analyte capture from liquid samples [Henderson et. al, 2006], [Toner et. al, 2007], [Stern et. al, 2010]. However exact understanding of the capture efficiency mechanisms has not been previously explained. Here we present a model in COMSOL Multiphysics® which calculates analyte capture efficiency based on initial ...

Study of Electrochemically Generated Two-Phase Flows

J. Schillings [1], O. Doche [2], J. Deseure [1],
[1] LEPMI, Grenoble, France
[2] SIMAP, Grenoble, France

The dependency of electrochemical processes performances on mass transfer is well-known. Electrolyte flow in the vicinity of electrodes surface can enhance reactions due to increased mass transfer. This flow can be generated by the production of a gaseous phase, leading to a natural bubble-driven convection flow. As a drawback, gas bubbles also modify electrodes active surface and the ...