Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Virtual Pharmacokinetic Model of the Human Eye - new

L. Murtomäki[1], S. Kotha[2]
[1]Aalto University, Greater Helsinki, Finland
[2]University Of Helsinki, Helsinki, Finland

There is a great need for an effective drug treatment of the posterior eye, as the major reason for visual disability in industrial countries is Age-related Macular Degeneration (AMD). In USA alone, there are almost 2 million people affected by AMD [1]. A virtual pharmacokinetic 3D model of the human eye is built to address this problem, using COMSOL Multiphysics® software, based on the Finite ...

Fundamental Three Dimensional Modeling and Parameter Estimation of a Diesel Oxidation Catalyst for Heavy Duty Trucks

A. Holmqvist[1] and C.U.I. Odenbrand[1]

[1]Department of Chemical Engineering, Faculty of Engineering, LTH, Lund University, Lund, Sweden

Mathematical optimization can be used as a computational engine to generate the best solution for a given problem in a systematic and efficient way. In the context of monolithic converter systems, the parameter estimation problem (or inverse problem) is solved using Partial Differential Equations (PDE)-based models of the physical system coupled with an optimization algorithm. These problems are ...

3D Modelling of Flow Dynamics in Packed Beds of Low Aspect Ratio - new

F. Alzahrani[1], F. Aiouache[1]
[1]Engineering Department, Lancaster University, Lancaster, UK

This work used the 3D CFD modeling to investigate non-uniform deactivation in packed bed reactors of low aspect ratios under steady state and dynamic operations. In order to explore the effects of condition of instability on local deactivation, detailed knowledge of flow dynamics (i.e. local structure of the packed bed, pressure drops and interstitial flow in the void space), heat and mass rate ...

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

M. Ghadrdan[1], and H. Mehdizadeh[2]
[1]Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
[2]Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Interest in the production of hydrogen from hydrocarbons has grown significantly recently. In order to achieve high surface to volume ratio with reasonable pressure drop, monolithic reactors are used. The goal of this work is to develop a two-phase (gas & solid) transient catalytic combustor model using a simplified flow field inside a single channel to test the advantages of the COMSOL ...

Multiphase Porous Media Model for Microwave Drying Spherical Potatoes - new

H. Zhu[1], T. Gulati[2], K. Huang[1], A.K. Datta[2]
[1]Sichuan University, Chengdu, Sichuan, China
[2]Cornell University, Ithaca, NY, USA

Mathematical description of microwave drying requires the solution of two different physics: electromagnetics in the microwave oven cavity and food material and, transport process (mass, momentum and heat transport) in the food material. Maxwell’s equations for electromagnetics were solved using the RF Module using the GMRES iterative solver with the GeometricMultigrid preconditioner. Mass, ...

A COMSOL Multiphysics® Software Interface with GEMS3K for Modeling Reactive Transport (Geo)Chemical Processes

O. B. Isgor [1], V. J. Azad [1],
[1] Oregon State University, Corvallis, OR, USA

This paper presents a generic interface for reactive transport process modeling that was developed between the COMSOL Multiphysics® software Java API (transport model) and GEMS3K (reaction model). While the transport of different species, kinetics of dissolution/precipitation, system potentials, fluid and gas flow, etc. can be modeled in a complex chemical system with COMSOL® software, the ...

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to ...

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

G. Petrone[1], G. Cammarata[1], S. Caggia[2], and M. Anastasi[2]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy
[2]Engineering Maintenance - ISAB Energy Services, Priolo Gargallo, Italy

In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to investigate on operative conditions mainly responsible of duct burners overheating. The results are obtained for several ...

2-D Modeling of Underground Coal Gasification (UCG)

S. Mahajani[1], S. Srikantiah[1], G. Samdani[1], A. Ganesh[1], P. Aghalayam[2]
[1]Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Institute of Technology Madras, Chennai, India

UCG is a process which converts coal to syn gas at the underground coal seam itself. UCG can help meeting the rising energy demand by utilizing coal resources that otherwise would be too deep, or of poor quality, or simply not economical to mine. As UCG takes place, a cavity is formed underground in the coal seam which grows three-dimensionally. The objective of this work is to develop a two ...