Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Results of Two 3D Coupled Models of a Unitary PEM Fuel Cell of 144cm² - new

E. Robalinho[1], E. F. Cunha[2], M. Linardi[2]
[1]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil
[2]IPEN/CNEN-SP, São Paulo, SP, Brazil

This computational implementation presents a new strategy of coupling two 3D models to satisfy the requirements of the comprehensive model of a unitary Proton Exchange Membrane fuel cell, including its internal geometries and constitutive materials, as well as distinct physical and chemical processes. Those different simultaneous processes required computational effort and the solution was the ...

Numerical Study of Smoldering Combustion of Activated Carbon in Ⅱ Iodine Absorber - new

T. Liang[1], M. Liu[1], X. Liu[1], Z. Meng[1]
[1]Safety Engineering, Zheng Zhou University, Zheng Zhou, Henan, China

Iodine absorber is a widely used purification equipment for purifying air in a nuclear power plant. In China, the common type is Ⅱ iodine absorber. Impregnated activated carbon is the main absorber within the iodine absorber. Because of the decays exothermic of radioactive iodine, heat is generated in the adsorption process. Carbon is a combustible material. Moreover, air is always supplied in ...

Coupled Numerical Modeling and Thermodynamic Approach for SiC Growth Process

J. M. Dedulle [1], K. Ariyawong [1], D. Chaussende [2]
[1] Univ. Grenoble Alpes, Grenoble, France
[2] CNRS, Grenoble, France

Silicon carbide (SiC) single crystals are industrially produced by the physical vapor transport technique. Apart from the geometry of the growth setup, there are two main process parameters that can be controlled: temperature and pressure. To support the development of the process, numerical simulation has imposed as the only tool able to describe the process itself, providing a good evaluation ...

Simulation of a Diesel Oxidation Catalyst Used in a NOx Storage and Reduction system for Heavy Duty Trucks

C. Odenbrand, and E. Senar Serra
Department of Chemical Engineering, Lund University, Lund, Sweden

This work concerns the performance of an oxidation catalyst used in a NOx storage and reduction system. The oxidation of NO is the main objective of this study, where the presence of CO and propene has also been taken into account. Experimental data has been determined on a monolithic oxidation catalyst mounted after a heavy duty diesel engine in a rig. The conversion of hydrocarbons is ...

Dried Reagent Resuspension for Point of Care Testing (Analysis at the Patient Bedside)

M. Huet [1],
[1] Department of Biotechnology, CEA/Université Grenoble-Alpes, Grenoble, France

A microfluidic component was designed to collect blood from a finger prick by capillary flow and to perform biological analysis. It was used to perform ABO blood typing experiments in one step, the blood drop deposit, by agglutination of red blood cells (RBC) using embedded dried reagents. The present study is a first step in the modeling of the whole agglutination assay. Blood typing ...

High Temperature Process Simulation: An Example in Crystal Growth

H. Rouch[1] and O. Geoffroy[1]
[1]INOPRO, Villard de Lans, France

High temperature processes are used in a large variety of industrial application. Simulation helps to solve technological problems and increase energy efficiency in case of industrial scale simulation. We present in this paper a research equipment simulation. The aim is to increase knowledge of temperature field in the crystal growth region in order to give researcher some important information ...

Design and Characterization of a Small Volume Reactor for the High Pressure Invacuo Study of Catalytic Surface Reactions

C. Clark[1,2], J. Fulton[3], T. Adams[3], E. Podgornov[4], and F. Zaera[4]
[1]Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
[2]Naval Surface Warfare Center, Corona, CA, USA
[3]Naval Surface Warfare Center, Crane, IN, USA
[4]Department of Chemistry, University of California, Riverside, CA, USA

The design and construction of ultra-high vacuum (UHV) systems for the study of surface reactions has lead to high impact innovation in a myriad of industries. A small volume reactor compatible with ultrahigh vacuum (UHV) surface-science instrumentation has been designed, modeled and tested for the study of the kinetics of surface chemical reactions on single crystals. CO oxidation experiments ...

Coupling Miscible Flow and Geochemistry for Carbon Dioxide Flooding into North Sea Chalk Reservoir

B. Niu[1], W. Yan[1], A.A. Shapiro[1], and E.H. Stenby[1]

[1]Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

As an effective method to cope with green-house gas emission, and to enhance oil recovery, injection of carbon dioxide into oil reservoirs has obtained increasing attentions. The flooding process involves complex phase behavior among oil, brine and CO2, and geochemical reaction between CO2 and rock. COMSOL Multiphysics® was first applied to simulating two flooding processes with known ...

Modeling and Optimization of a Mg-Metal Hydride Rectangular Tank in the Hydriding Process

E.I. Gkanas[1], S.S. Makridis[1], A.K. Stubos[2], A. Lopez[3], J. Folch[4], G. Noriega[4]
[1]Materials for Energy Applications Group, Department of Mechanical Engineering, University of Western Macedonia, Greece
[2]Environmental Technology Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Greece
[3]Universidad Politécnica De Cataluña, Barcelona, Spain
[4]Cidete INGENIEROS, Barcelona, Spain

Hydrogen storage can be considered as a key factor in the development of hydrogen economy. Hydrogen storage in a magnesium hydride MgH2 is a very promising technique for numerous of reasons. Magnesium is abundant, relatively cheap, life – friendly , weight storage capacity of 7.6% and low price of Mg metal. A simulation work is presented in order to study the absorption kinetics of a Mg – ...

Coupled Palaehydrogeological Microbial and Geochemical Reactive Transport Model of the Olkiluoto Site (Finland)

P. Trinchero[1], M. Luna[1], J. Molinero[1], G. Román-Ross[1], F. Maia[1], A. Nardi[1], J. Löfman[2], P. Pitkänen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Finland
[3]Posiva Oy, Olkiluoto, Finland

Olkiluoto at Eurajoki has been selected as the final repository site for spent nuclear waste in Finland. This area has been affected, at regional scale, by land-uplift processes related to the ice withdrawal. These events have resulted in a complex and stratified heterogeneous hydrochemical system. The objective of this work was to develop a robust paleohydrogeological reactive transport (PRT) ...