Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Evaluation of Novel Wing Design for UAV - new

P. K. Bahumanyam[1]
[1]University of Alabama in Huntsville, Huntsville, AL, USA

Viable design alternative for the existing and fast growing UAVs which are optimized for unmanned flight is of great demand. Designing of a small scale UAV alternative to the AAI Aerosonde UAV has been considered changing the wing tail configuration of the vehicle analyzing both structural and aerodynamic performance improvements using COMSOL Multiphysics® software.

The Simulation of Electric Field Distribution in Electrospinning Process - new

Y. Zheng[1], B. Xin[2]
[1]Donghua University, Shanghai, China
[2]Shanghai University of Engineering Science, Shanghai, China

The electric field plays a very important role in the electrospinning process, which needs to be seriously considered in the electrospinning configuration developing. High voltage involved in electrospinning process leads to difficulty in measuring the electric field. Numerical simulation is used to design the electric field, and experiments are carried out to validate the spinneret and ...

COMSOL Implementation of a Multiphase Fluid Flow Model in Porous Media

M. Diaz-Viera, D. Lopez-Falcon, A. Moctezuma-Berthier, and A. Ortiz-Tapia
Instituto Mexicano del Petroleo, México D.F., Mexico

The aim of the present work is to implement in COMSOL Multiphysics a multiphase fluid flow model in porous media, also known in the oil reservoir engineering literature as a black oil model, using a standard finite element approach. In particular, we are interested to apply this model coupled with a multiphase, multicomponent transport model to study Enhanced Oil Recovery processes at laboratory ...

Numerical Computation of Two-Phase Flow in Porous Media

D. Droste[1], F. Lindner[1], C. Mundt[1], M. Pfitzner[1]
[1]Universität der Bundeswehr, Munich, Bavaria, Germany

In this study we investigate the heat and mass transfer in a porous media with phase change. The liquid fluid is injected from one side and heated from the other side, where it leaves the porous material in a gaseous state. Dominant forces are capillary interactions and two-phase heat conduction. To model the process we use a two-phase mixture model on a macroscopic scale. This model is ...

A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones - new

J. W. McTernan[1], I. Abu-Mahfouz[2]
[1]Buell Division of Fisher-Klosterman Inc., Lebanon, PA, USA
[2]Pennsylvania State University - Harrisburg, Middletown, PA, USA

Fluidized Catalytic Cracking (FCC) regenerators utilize a fluidized bed to facilitate catalyst regeneration. Cyclones are used to separate the catalyst from the gas stream and return the catalyst to the fluidized bed; as the gas progresses through the system for further processing. This is accomplished by centrifugal forces that force the particles to dislodge from the fluid flow. The fluid ...

Enthalpy Porosity Method for CFD Simulation of Natural Convection Phenomenon for Phase Change Problems in the Molten Pool and its Importance during Melting of Solids

Priyanshu Goyal[1], Anu Dutta[1], V.Verma[1], I. Thangamani[1], R.K. Singh[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

Shielded transportation casks are commonly used for transportation and storage of radioactive waste materials. Design approval of such casks by regulatory authority is subject to its compliance with a thermal test (among other tests) Due to exposure of cask to fire , there is a possibility of melting of the shielding material (lead) used for the cask and need to evaluate extent of melting. ...

Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System

D. Groulx[1], and W. Ogoh[1]

[1]Mechanical Engineering Department, Dalhousie University, Halifax, Nova Scotia, Canada

One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled with paraffin wax, through which a copper pipe carrying hot water is inserted, is presented in this paper. It is shown that the physical processes encountered in the flow of water, the heat transfer by conduction and convection, and the phase ...

Numerical Study of Navier-Stokes Equations in Supersonic Flow over a Double Wedge Airfoil using Adaptive Grids

V. Gopal[1], R. Kolluru[1]
[1]BMS College of Engineering, Bangalore, Karnataka, India.

Numerical study of aerodynamic characteristics in steady laminar supersonic flow over a double wedge airfoil is carried out using commercially available finite element based CFD tool COMSOL Multiphysics. The aerodynamic characteristics of double wedge airfoil like lift and drag are analyzed by solving Navier-Stokes equations in the flow field for various thickness to chord ratios (t_c) and angle ...

Modeling of a Magnetocaloric System for Electric Vehicles

A. Noume[1], C. Vasile[1], M. Risser[1]
[1]National Institute of Applied Science (INSA), Strasbourg, France

In automotive industry, regardless the type of engine we use, heating and air-conditioning is responsible for the highest energy consumption among all the auxiliary systems all over the year. For conventional vehicles with thermal engines, the heating of the internal space is easy obtainable because of the heat waste from the engine. For the electric vehicles, as the energy is delivered by the ...

Simulation of a 3D Flow-Focusing Capillary-Based Droplet Generator

D. Conchouso[1], E. Al Rawashdeh[1], A. Arevalo[1], D. Castro[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

This paper presents the multiphase 2D axisymmetric simulation of a three-dimensional flow-focusing microfluidic droplet generator using the laminar two phase flow, phase field interface in COMSOL Multiphysics®. The performance of the device is characterized at different flow conditions. The generation frequency and diameter of droplets was studied and shows direct correlation with the flow rates.