Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Small-Scaled de Laval Nozzle for IGLIS Experiment

E. Mogilevskiy[1], R. Ferrer[1], L. Gaffney[1], C. Granados[1], M. Huyse[1], Yu. Kudryavtsev[1], S. Raeder[1], P. Van Duppen[1]
[1]KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium

De Laval nozzles are used in supersonic aerodynamical tubes and engines. They are also employed for the production of cold gas jets to be used in chemical reactions studies. Recently, cold gas jets have been proposed of In-Gas Laser ionization Spectroscopy (IGLIS) The nozzle has a converging and a diverging part with a throat between them. High gas pressure and temperature, and low velocity ...

Fluid Flow Analysis For Cross-Flow Around Four Cylinders Arranged In A Square Configuration

A. Dutta, P. Goyal, R.K. Singh, and K.K. Vaze
Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Cross-flow around a group of cylinders is a very common phenomenon in engineering, such as flow around heat exchanger tube arrays. The cross-flow-induced vibration might cause a reduction of equipment life and might even lead to the occurrence of severe accidents. Hence, it is necessary to understand the mechanism of flow-induced vibration and the associated fluid–structure interaction in order ...

Thermo-fluiddynamic Modeling of Laser Beam-Matter Interaction in Selective Laser Melting

K.-H. Leitz [1], P. Singer [1], A. Plankensteiner [1], B. Tabernig [1], H. Kestler [1], L. S. Sigl [1],
[1] Plansee SE, Reutte, Austria

Selective Laser Melting (SLM) offers great potential for future manufacturing technology. In order to extend its applicability for the processing of high melting materials like molybdenum fundamental process understanding is required. This can be obtained by multiphysical simulations that allow a look into the process. In this contribution a thermo-fluiddynamical simulation model for laser beam ...

CFD Modeling for the Ventilation System of a Hospital Room

A. Kermani [1],
[1] Veryst Engineering LLC, Needham, MA, USA

Indoor ventilation with good air quality control prevents infection with minimizing the spread of airborne respiratory and other infections in hospitals. CFD can be utilized to optimize flow pattern in clean rooms especially hospital clean rooms. More than two million people in Europe are infected due to Health-care Associated Infection (HAI) (Pittet et al., 2005). It is believed that transfer ...

Topology Optimization of Thermal Heat Sinks

J. H. K. Haertel [1], K. Engelbrecht [1], B. S. Lazarov [2], O. Sigmund [2],
[1] Technical University of Denmark, Roskilde, Denmark
[2] Technical University of Denmark, Kgs. Lynby, Denmark

1. Introduction The topology optimization method is becoming increasingly popular as a design tool for multiphysics systems [1,2]. Topology optimization of fluid-thermal systems has been presented for example in [3] for forced convective heat transfer and in [4] for natural convection problems. In this work, topology optimization including density filtering and projection is applied to ...

Simulation of Supercritical Fluid Extraction Process

P. Katiyar [1], S. Khanam [1],
[1] Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

This paper deals with the simulation of mathematical model for supercritical extraction. Reverchon, 1996 extracted sage oil using supercritical extraction method from sage leaves at 9 MPa and 50 ᵒC. Four mean size of sage leaves ranging from 0.25 to 3.10 mm were taken for extraction with other experimental conditions and process parameters. Experimental results were fitted in the model developed ...

Numerical Computation of Two-Phase Flow in Porous Media

D. Droste[1], F. Lindner[1], C. Mundt[1], M. Pfitzner[1]
[1]Universität der Bundeswehr, Munich, Bavaria, Germany

In this study we investigate the heat and mass transfer in a porous media with phase change. The liquid fluid is injected from one side and heated from the other side, where it leaves the porous material in a gaseous state. Dominant forces are capillary interactions and two-phase heat conduction. To model the process we use a two-phase mixture model on a macroscopic scale. This model is ...

The Simulation of Electric Field Distribution in Electrospinning Process - new

Y. Zheng[1], B. Xin[2]
[1]Donghua University, Shanghai, China
[2]Shanghai University of Engineering Science, Shanghai, China

The electric field plays a very important role in the electrospinning process, which needs to be seriously considered in the electrospinning configuration developing. High voltage involved in electrospinning process leads to difficulty in measuring the electric field. Numerical simulation is used to design the electric field, and experiments are carried out to validate the spinneret and ...

3D Acoustic Streaming Field in High-Intensity Discharge Lamps - new

B. Baumann[1], J. Schwieger[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge lamps will in the foreseeable future be important light sources despite a growing market share of LEDs. Cost and energy efficient high frequency (300 kHz) operation is hampered by the excitation of acoustic resonances inside the arc tube, which results in low frequency (10 Hz) light flicker. Our aim is to calculate the acoustic streaming velocity field, which is related ...

Modeling of Viscous Fingering

E. Holzbecher[1]

[1]Georg-August University, Göttingen, Germany

Viscous fingering is a topic of interest since the beginning of computational fluid dynamics. Here we focus on the classical constellation of miscible displacement, as it has been investigated in Hele-Shaw cells. A temperature or salinity front is entering with a fluid that has a different viscosity. The pure 1D flow is destabilized by the Saffman-Taylor instability. Using COMSOL Multiphysics® ...